IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.14776.html
   My bibliography  Save this paper

Inequality Sensitive Optimal Treatment Assignment

Author

Listed:
  • Eduardo Zambrano

Abstract

The egalitarian equivalent, $ee$, of a societal distribution of outcomes with mean $m$ is the outcome level such that the evaluator is indifferent between the distribution of outcomes and a society in which everyone obtains an outcome of $ee$. For an inequality averse evaluator, $ee

Suggested Citation

  • Eduardo Zambrano, 2024. "Inequality Sensitive Optimal Treatment Assignment," Papers 2409.14776, arXiv.org.
  • Handle: RePEc:arx:papers:2409.14776
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.14776
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    2. Xuan Chen & Carlos A. Flores, 2015. "Bounds on Treatment Effects in the Presence of Sample Selection and Noncompliance: The Wage Effects of Job Corps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 523-540, October.
    3. Marc Fleurbaey, 2010. "Assessing Risky Social Situations," Journal of Political Economy, University of Chicago Press, vol. 118(4), pages 649-680, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    2. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    3. Bommier, Antoine & Lanz, Bruno & Zuber, Stéphane, 2015. "Models-as-usual for unusual risks? On the value of catastrophic climate change," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 1-22.
    4. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
    5. Hougaard, Jens Leth & Moreno-Ternero, Juan D. & Østerdal, Lars Peter, 2013. "A new axiomatic approach to the evaluation of population health," Journal of Health Economics, Elsevier, vol. 32(3), pages 515-523.
    6. Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
    7. Xintong Wang & Carlos A. Flores & Alfonso Flores-Lagunes, 2020. "The Effects of Vietnam-Era Military Service on the Long-Term Health of Veterans: A Bounds Analysis," Center for Policy Research Working Papers 234, Center for Policy Research, Maxwell School, Syracuse University.
    8. Pierre Pestieau & Gregory Ponthiere, 2012. "The Public Economics of Increasing Longevity," Hacienda Pública Española / Review of Public Economics, IEF, vol. 200(1), pages 41-74, March.
    9. Jingyi Xue, 2018. "Fair division with uncertain needs," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(1), pages 105-136, June.
    10. Grégory Ponthière, 2020. "Pensions and social justice. From standard retirement to reverse retirement," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(6), pages 193-226.
    11. Ying Huang & Youyi Fong, 2014. "Identifying optimal biomarker combinations for treatment selection via a robust kernel method," Biometrics, The International Biometric Society, vol. 70(4), pages 891-901, December.
    12. Yan Liu, 2022. "Policy Learning under Endogeneity Using Instrumental Variables," Papers 2206.09883, arXiv.org, revised Mar 2024.
    13. Marie‐Louise Leroux & Pierre Pestieau & Gregory Ponthiere, 2024. "The optimal design of assisted reproductive technologies policies," Health Economics, John Wiley & Sons, Ltd., vol. 33(7), pages 1454-1479, July.
    14. Fleurbaey, Marc & Zuber, Stéphane, 2017. "Fair management of social risk," Journal of Economic Theory, Elsevier, vol. 169(C), pages 666-706.
    15. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    16. Roland A. Matsouaka & Junlong Li & Tianxi Cai, 2014. "Evaluating marker-guided treatment selection strategies," Biometrics, The International Biometric Society, vol. 70(3), pages 489-499, September.
    17. Hammitt, James K., 2022. "Prevention, Treatment, and Palliative Care: The Relative Value of Health Improvements under Alternative Evaluation Frameworks," TSE Working Papers 22-1339, Toulouse School of Economics (TSE).
    18. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    19. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    20. Marco Mariotti & Roberto Veneziani, 2018. "Opportunities as Chances: Maximising the Probability that Everybody Succeeds," Economic Journal, Royal Economic Society, vol. 128(611), pages 1609-1633, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.14776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.