IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.05698.html
   My bibliography  Save this paper

MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction

Author

Listed:
  • Mengyu Wang
  • Tiejun Ma

Abstract

It is widely acknowledged that extracting market sentiments from news data benefits market predictions. However, existing methods of using financial sentiments remain simplistic, relying on equal-weight and static aggregation to manage sentiments from multiple news items. This leads to a critical issue termed ``Aggregated Sentiment Homogenization'', which has been explored through our analysis of a large financial news dataset from industry practice. This phenomenon occurs when aggregating numerous sentiments, causing representations to converge towards the mean values of sentiment distributions and thereby smoothing out unique and important information. Consequently, the aggregated sentiment representations lose much predictive value of news data. To address this problem, we introduce the Market Attention-weighted News Aggregation Network (MANA-Net), a novel method that leverages a dynamic market-news attention mechanism to aggregate news sentiments for market prediction. MANA-Net learns the relevance of news sentiments to price changes and assigns varying weights to individual news items. By integrating the news aggregation step into the networks for market prediction, MANA-Net allows for trainable sentiment representations that are optimized directly for prediction. We evaluate MANA-Net using the S&P 500 and NASDAQ 100 indices, along with financial news spanning from 2003 to 2018. Experimental results demonstrate that MANA-Net outperforms various recent market prediction methods, enhancing Profit & Loss by 1.1% and the daily Sharpe ratio by 0.252.

Suggested Citation

  • Mengyu Wang & Tiejun Ma, 2024. "MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction," Papers 2409.05698, arXiv.org.
  • Handle: RePEc:arx:papers:2409.05698
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.05698
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. Zhang, Yongjie & Song, Weixin & Shen, Dehua & Zhang, Wei, 2016. "Market reaction to internet news: Information diffusion and price pressure," Economic Modelling, Elsevier, vol. 56(C), pages 43-49.
    3. Wasserfallen, Walter, 1989. "Macroeconomics news and the stock market: Evidence from Europe," Journal of Banking & Finance, Elsevier, vol. 13(4-5), pages 613-626, September.
    4. Michaël Dewally, 2003. "Internet Investment Advice: Investing with a Rock of Salt," Financial Analysts Journal, Taylor & Francis Journals, vol. 59(4), pages 65-77, July.
    5. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    6. Thanh D. Huynh & Daniel R. Smith, 2017. "Stock Price Reaction to News: The Joint Effect of Tone and Attention on Momentum," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 18(3), pages 304-328, July.
    7. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    8. Benjamin Clapham & Michael Siering & Peter Gomber, 2021. "Popular News Are Relevant News! How Investor Attention Affects Algorithmic Decision-Making and Decision Support in Financial Markets," Information Systems Frontiers, Springer, vol. 23(2), pages 477-494, April.
    9. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    10. Feng Li, 2010. "The Information Content of Forward‐Looking Statements in Corporate Filings—A Naïve Bayesian Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 48(5), pages 1049-1102, December.
    11. Veronesi, Pietro, 1999. "Stock Market Overreaction to Bad News in Good Times: A Rational Expectations Equilibrium Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 975-1007.
    12. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengyu Wang & Shay B. Cohen & Tiejun Ma, 2024. "Modeling News Interactions and Influence for Financial Market Prediction," Papers 2410.10614, arXiv.org.
    2. Schnaubelt, Matthias & Fischer, Thomas G. & Krauss, Christopher, 2018. "Separating the signal from the noise - financial machine learning for Twitter," FAU Discussion Papers in Economics 14/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Schnaubelt, Matthias & Fischer, Thomas G. & Krauss, Christopher, 2020. "Separating the signal from the noise – Financial machine learning for Twitter," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    4. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    5. Ahmed, Yousry & Elshandidy, Tamer, 2016. "The effect of bidder conservatism on M&A decisions: Text-based evidence from US 10-K filings," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 176-190.
    6. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    7. An, Suwei, 2023. "Essays on incentive contracts, M&As, and firm risk," Other publications TiSEM dd97d2f5-1c9d-47c5-ba62-f, Tilburg University, School of Economics and Management.
    8. Bartosz Bieganowski & Robert Ślepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Working Papers 2024-03, Faculty of Economic Sciences, University of Warsaw.
    9. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    10. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    11. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    12. Stephen Foerster, 2011. "Double then Nothing: Why Stock Investments Relying on Simple Heuristics May Disappoint," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 3(2), pages 115-140, September.
    13. Blankespoor, Elizabeth & deHaan, Ed & Marinovic, Iván, 2020. "Disclosure processing costs, investors’ information choice, and equity market outcomes: A review," Journal of Accounting and Economics, Elsevier, vol. 70(2).
    14. Fabian Waldow & Matthias Schnaubelt & Christopher Krauss & Thomas Günter Fischer, 2021. "Machine Learning in Futures Markets," JRFM, MDPI, vol. 14(3), pages 1-14, March.
    15. Gregory S. Miller & Douglas J. Skinner, 2015. "The Evolving Disclosure Landscape: How Changes in Technology, the Media, and Capital Markets Are Affecting Disclosure," Journal of Accounting Research, Wiley Blackwell, vol. 53(2), pages 221-239, May.
    16. Illia Baranochnikov & Robert Ślepaczuk, 2022. "A comparison of LSTM and GRU architectures with novel walk-forward approach to algorithmic investment strategy," Working Papers 2022-21, Faculty of Economic Sciences, University of Warsaw.
    17. Thierry Warin & Aleksandar Stojkov, 2021. "Machine Learning in Finance: A Metadata-Based Systematic Review of the Literature," JRFM, MDPI, vol. 14(7), pages 1-31, July.
    18. Zheng Tracy Ke & Bryan T. Kelly & Dacheng Xiu, 2019. "Predicting Returns With Text Data," NBER Working Papers 26186, National Bureau of Economic Research, Inc.
    19. Keer Yang & Guanqun Zhang & Chuan Bi & Qiang Guan & Hailu Xu & Shuai Xu, 2023. "Improving CNN-base Stock Trading By Considering Data Heterogeneity and Burst," Papers 2303.09407, arXiv.org.
    20. Alessandro Carretta & Vincenzo Farina & Elvira Anna Graziano & Marco Reale, 2013. "Does Investor Attention Influence Stock Market Activity? The Case of Spin-Off Deals," Palgrave Macmillan Studies in Banking and Financial Institutions, in: Alessandro Carretta & Gianluca Mattarocci (ed.), Asset Pricing, Real Estate and Public Finance over the Crisis, chapter 1, pages 7-24, Palgrave Macmillan.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.05698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.