IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.00742.html
   My bibliography  Save this paper

Simulation of Social Media-Driven Bubble Formation in Financial Markets using an Agent-Based Model with Hierarchical Influence Network

Author

Listed:
  • Gonzalo Bohorquez
  • John Cartlidge

Abstract

We propose that a tree-like hierarchical structure represents a simple and effective way to model the emergent behaviour of financial markets, especially markets where there exists a pronounced intersection between social media influences and investor behaviour. To explore this hypothesis, we introduce an agent-based model of financial markets, where trading agents are embedded in a hierarchical network of communities, and communities influence the strategies and opinions of traders. Empirical analysis of the model shows that its behaviour conforms to several stylized facts observed in real financial markets; and the model is able to realistically simulate the effects that social media-driven phenomena, such as echo chambers and pump-and-dump schemes, have on financial markets.

Suggested Citation

  • Gonzalo Bohorquez & John Cartlidge, 2024. "Simulation of Social Media-Driven Bubble Formation in Financial Markets using an Agent-Based Model with Hierarchical Influence Network," Papers 2409.00742, arXiv.org.
  • Handle: RePEc:arx:papers:2409.00742
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.00742
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Alfarano & M. Milakovic & M. Raddant, 2013. "A note on institutional hierarchy and volatility in financial markets," The European Journal of Finance, Taylor & Francis Journals, vol. 19(6), pages 449-465, July.
    2. Klein, Tony, 2022. "A note on GameStop, short squeezes, and autodidactic herding: An evolution in financial literacy?," Finance Research Letters, Elsevier, vol. 46(PA).
    3. Nils Bundi & Marc Wildi, 2019. "Bitcoin and market-(in)efficiency: a systematic time series approach," Digital Finance, Springer, vol. 1(1), pages 47-65, November.
    4. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    5. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    6. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    7. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    8. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Yoon, Seong-Min, 2018. "Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets," Finance Research Letters, Elsevier, vol. 27(C), pages 228-234.
    9. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    2. Klein, A. & Urbig, D. & Kirn, S., 2008. "Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach," MPRA Paper 14433, University Library of Munich, Germany.
    3. Nils Bertschinger & Oliver Pfante, 2020. "Early Warning Signs of Financial Market Turmoils," JRFM, MDPI, vol. 13(12), pages 1-24, November.
    4. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    5. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
    6. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    7. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    8. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    9. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    10. Bàrbara Llacay & Gilbert Peffer, 2018. "Using realistic trading strategies in an agent-based stock market model," Computational and Mathematical Organization Theory, Springer, vol. 24(3), pages 308-350, September.
    11. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    12. Huang, Weihong & Zheng, Huanhuan, 2012. "Financial crises and regime-dependent dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 445-461.
    13. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    14. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    15. Alexandru Mandes, 2014. "Order Placement in a Continuous Double Auction Agent Based Model," MAGKS Papers on Economics 201443, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    16. Jiahua Wang & Hongliang Zhu & Dongxin Li, 2018. "Price Dynamics in an Order-Driven Market with Bayesian Learning," Complexity, Hindawi, vol. 2018, pages 1-15, November.
    17. Junhuan Zhang & Peter McBurney & Katarzyna Musial, 2018. "Convergence of trading strategies in continuous double auction markets with boundedly-rational networked traders," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 301-352, January.
    18. Westerhoff, Frank, 2009. "A simple agent-based financial market model: Direct interactions and comparisons of trading profits," BERG Working Paper Series 61, Bamberg University, Bamberg Economic Research Group.
    19. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2015. "Markets, herding and response to external information," Papers 1506.03708, arXiv.org, revised Jun 2015.
    20. Alexandru Mandes & Peter Winker, 2017. "Complexity and model comparison in agent based modeling of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 469-506, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.00742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.