IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.15033.html
   My bibliography  Save this paper

Stochastic dominance for super heavy-tailed random variables

Author

Listed:
  • Yuyu Chen
  • Seva Shneer

Abstract

We introduce a class of super heavy-tailed distributions and establish the inequality that any weighted average of independent and identically distributed super heavy-tailed random variables stochastically dominates one such random variable. We show that many commonly used extremely heavy-tailed (i.e., infinite-mean) distributions, such as the Pareto, Fr\'echet, and Burr distributions, belong to the class of super heavy-tailed distributions. The established stochastic dominance relation is further generalized to allow negatively dependent or non-identically distributed random variables. In particular, the weighted average of non-identically distributed random variables stochastically dominates their distribution mixtures. Applications of these results in portfolio diversification, goods bundling, and inventory management are discussed. Remarkably, in the presence of super heavy-tailedness, the results that hold for finite-mean models in these applications are flipped.

Suggested Citation

  • Yuyu Chen & Seva Shneer, 2024. "Stochastic dominance for super heavy-tailed random variables," Papers 2408.15033, arXiv.org.
  • Handle: RePEc:arx:papers:2408.15033
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.15033
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palfrey, Thomas R, 1983. "Bundling Decisions by a Multiproduct Monopolist with Incomplete Information," Econometrica, Econometric Society, vol. 51(2), pages 463-483, March.
    2. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    3. Samuelson, Paul A., 1967. "General Proof that Diversification Pays*," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 2(1), pages 1-13, March.
    4. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    5. Eling, Martin & Wirfs, Jan, 2019. "What are the actual costs of cyber risk events?," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1109-1119.
    6. Rustam Ibragimov & Johan Walden, 2010. "Optimal Bundling Strategies Under Heavy-Tailed Valuations," Management Science, INFORMS, vol. 56(11), pages 1963-1976, November.
    7. Qin, Yan & Wang, Ruoxuan & Vakharia, Asoo J. & Chen, Yuwen & Seref, Michelle M.H., 2011. "The newsvendor problem: Review and directions for future research," European Journal of Operational Research, Elsevier, vol. 213(2), pages 361-374, September.
    8. Yang, Hongsuk & Schrage, Linus, 2009. "Conditions that cause risk pooling to increase inventory," European Journal of Operational Research, Elsevier, vol. 192(3), pages 837-851, February.
    9. Kostas Bimpikis & Mihalis G. Markakis, 2016. "Inventory Pooling Under Heavy-Tailed Demand," Management Science, INFORMS, vol. 62(6), pages 1800-1813, June.
    10. Block, Henry W. & Savits, Thomas H. & Shaked, Moshe, 1985. "A concept of negative dependence using stochastic ordering," Statistics & Probability Letters, Elsevier, vol. 3(2), pages 81-86, April.
    11. Banciu, M. & Ødegaard, F., 2016. "Optimal product bundling with dependent valuations: The price of independence," European Journal of Operational Research, Elsevier, vol. 255(2), pages 481-495.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuyu Chen & Ruodu Wang, 2024. "Infinite-mean models in risk management: Discussions and recent advances," Papers 2408.08678, arXiv.org, revised Oct 2024.
    2. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2024. "Risk exchange under infinite-mean Pareto models," Papers 2403.20171, arXiv.org.
    3. Yuyu Chen & Paul Embrechts & Ruodu Wang, 2022. "An unexpected stochastic dominance: Pareto distributions, dependence, and diversification," Papers 2208.08471, arXiv.org, revised Mar 2024.
    4. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    5. Kim, Nayeon & Montreuil, Benoit & Klibi, Walid & Zied Babai, M., 2023. "Network inventory deployment for responsive fulfillment," International Journal of Production Economics, Elsevier, vol. 255(C).
    6. Yuyu Chen & Taizhong Hu & Ruodu Wang & Zhenfeng Zou, 2024. "Dominance between combinations of infinite-mean Pareto random variables," Papers 2404.18467, arXiv.org.
    7. Diwakar Gupta & Yigal Gerchak, 2002. "Quantifying Operational Synergies in a Merger/Acquisition," Management Science, INFORMS, vol. 48(4), pages 517-533, April.
    8. Pan, Fei & Pan, Shenle & Zhou, Wei & Fan, Tijun, 2022. "Perishable product bundling with logistics uncertainty: Solution based on physical internet," International Journal of Production Economics, Elsevier, vol. 244(C).
    9. Lei Lei & Jun Ru & Ruixia Shi & Jun Zhang, 2022. "A Two‐Product Newsvendor Problem with Partial Demand Substitution," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1157-1173, March.
    10. Silbermayr, Lena & Jammernegg, Werner & Kischka, Peter, 2017. "Inventory pooling with environmental constraints using copulas," European Journal of Operational Research, Elsevier, vol. 263(2), pages 479-492.
    11. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    12. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    13. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    14. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    15. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    16. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    17. Moon, Ilkyeong & Feng, Xuehao, 2017. "Supply chain coordination with a single supplier and multiple retailers considering customer arrival times and route selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 78-97.
    18. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    19. Mofidi, Seyed Shahab & Pazour, Jennifer A. & Roy, Debjit, 2018. "Proactive vs. reactive order-fulfillment resource allocation for sea-based logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 66-84.
    20. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.15033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.