IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.17888.html
   My bibliography  Save this paper

Enhanced power enhancements for testing many moment equalities: Beyond the $2$- and $\infty$-norm

Author

Listed:
  • Anders Bredahl Kock
  • David Preinerstorfer

Abstract

Contemporary testing problems in statistics are increasingly complex, i.e., high-dimensional. Tests based on the $2$- and $\infty$-norm have received considerable attention in such settings, as they are powerful against dense and sparse alternatives, respectively. The power enhancement principle of Fan et al. (2015) combines these two norms to construct improved tests that are powerful against both types of alternatives. In the context of testing whether a candidate parameter satisfies a large number of moment equalities, we construct a test that harnesses the strength of all $p$-norms with $p\in[2, \infty]$. As a result, this test is consistent against strictly more alternatives than any test based on a single $p$-norm. In particular, our test is consistent against more alternatives than tests based on the $2$- and $\infty$-norm, which is what most implementations of the power enhancement principle target. We illustrate the scope of our general results by using them to construct a test that simultaneously dominates the Anderson-Rubin test (based on $p=2$), tests based on the $\infty$-norm and power enhancement based combinations of these in terms of consistency in the linear instrumental variable model with many instruments.

Suggested Citation

  • Anders Bredahl Kock & David Preinerstorfer, 2024. "Enhanced power enhancements for testing many moment equalities: Beyond the $2$- and $\infty$-norm," Papers 2407.17888, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2407.17888
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.17888
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    2. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    3. Yangfan Zhang & Runmin Wang & Xiaofeng Shao, 2022. "Adaptive Inference for Change Points in High-Dimensional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1751-1762, October.
    4. Gongjun Xu & Lifeng Lin & Peng Wei & Wei Pan, 2016. "An adaptive two-sample test for high-dimensional means," Biometrika, Biometrika Trust, vol. 103(3), pages 609-624.
    5. Artūras Juodis & Simon Reese, 2022. "The Incidental Parameters Problem in Testing for Remaining Cross-Section Correlation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1191-1203, June.
    6. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-1286, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    3. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.
    4. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    5. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    6. Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
    7. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016. "Risks for the long run: Estimation with time aggregation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
    8. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    9. Athanasios Geromichalos & Lucas Herrenbrueck, 2022. "The Liquidity-Augmented Model of Macroeconomic Aggregates: A New Monetarist DSGE Approach," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 45, pages 134-167, July.
    10. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    11. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    12. Smoluk, H. J. & Neveu, Raymond P., 2002. "Consumption and asset prices: An analysis across income groups," Review of Financial Economics, Elsevier, vol. 11(1), pages 47-62.
    13. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Isaiah Andrews & Anna Mikusheva, 2016. "Conditional Inference With a Functional Nuisance Parameter," Econometrica, Econometric Society, vol. 84, pages 1571-1612, July.
    15. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    16. Andros Gregoriou & Christos Ioannidis, 2007. "Generalized method of moments and present value tests of the consumption-capital asset pricing model under transactions costs: evidence from the UK stock market," Empirical Economics, Springer, vol. 32(1), pages 19-39, April.
    17. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    18. Siddiqi, Hammad, 2015. "Anchoring and Adjustment Heuristic: A Unified Explanation for Equity Puzzles," MPRA Paper 68729, University Library of Munich, Germany.
    19. Epstein, Larry G. & Zin, Stanley E., 2001. "The independence axiom and asset returns," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 537-572, December.
    20. Ariane Szafarz, 2015. "Market Efficiency and Crises:Don’t Throw the Baby out with the Bathwater," Bankers, Markets & Investors, ESKA Publishing, issue 139, pages 20-26, November-.
    21. Pizer, William A., 1999. "The optimal choice of climate change policy in the presence of uncertainty," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 255-287, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.17888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.