IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.14635.html
   My bibliography  Save this paper

Predicting the Distribution of Treatment Effects: A Covariate-Adjustment Approach

Author

Listed:
  • Bruno Fava

Abstract

Important questions for impact evaluation require knowledge not only of average effects, but of the distribution of treatment effects. What proportion of people are harmed? Does a policy help many by a little? Or a few by a lot? The inability to observe individual counterfactuals makes these empirical questions challenging. I propose an approach to inference on points of the distribution of treatment effects by incorporating predicted counterfactuals through covariate adjustment. I show that finite-sample inference is valid under weak assumptions, for example, when data come from a Randomized Controlled Trial (RCT), and that large-sample inference is asymptotically exact under suitable conditions. Finally, I revisit five RCTs in microcredit where average effects are not statistically significant and find evidence of both positive and negative treatment effects in household income. On average across studies, at least 13.6% of households benefited, and 12.5% were negatively affected.

Suggested Citation

  • Bruno Fava, 2024. "Predicting the Distribution of Treatment Effects: A Covariate-Adjustment Approach," Papers 2407.14635, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2407.14635
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.14635
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dean Karlan & Jonathan Zinman, 2010. "Expanding Credit Access: Using Randomized Supply Decisions to Estimate the Impacts," The Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 433-464, January.
    2. McKenzie, David & Sansone, Dario, 2019. "Predicting entrepreneurial success is hard: Evidence from a business plan competition in Nigeria," Journal of Development Economics, Elsevier, vol. 141(C).
    3. Victor Chernozhukov & Mert Demirer & Esther Duflo & Iv'an Fern'andez-Val, 2017. "Fisher-Schultz Lecture: Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments, with an Application to Immunization in India," Papers 1712.04802, arXiv.org, revised Oct 2023.
    4. Bruno Crépon & Florencia Devoto & Esther Duflo & William Parienté, 2015. "Estimating the Impact of Microcredit on Those Who Take It Up: Evidence from a Randomized Experiment in Morocco," American Economic Journal: Applied Economics, American Economic Association, vol. 7(1), pages 123-150, January.
    5. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    6. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    7. Manuela Angelucci & Dean Karlan & Jonathan Zinman, 2015. "Microcredit Impacts: Evidence from a Randomized Microcredit Program Placement Experiment by Compartamos Banco," American Economic Journal: Applied Economics, American Economic Association, vol. 7(1), pages 151-182, January.
    8. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    9. Rachael Meager, 2019. "Understanding the Average Impact of Microcredit Expansions: A Bayesian Hierarchical Analysis of Seven Randomized Experiments," American Economic Journal: Applied Economics, American Economic Association, vol. 11(1), pages 57-91, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Bjorkegren & Joshua Blumenstock & Omowunmi Folajimi-Senjobi & Jacqueline Mauro & Suraj R. Nair, 2022. "Instant Loans Can Lift Subjective Well-Being: A Randomized Evaluation of Digital Credit in Nigeria," Papers 2202.13540, arXiv.org.
    2. Bernardus Van Doornik & Armando Gomes & David Schoenherr & Janis Skrastins, 2024. "Financial Access and Labor Market Outcomes: Evidence from Credit Lotteries," American Economic Review, American Economic Association, vol. 114(6), pages 1854-1881, June.
    3. Masselus, Lise & Petrik, Christina & Ankel-Peters, Jörg, 2024. "Lost in the design space? Construct validity in the microfinance literature," Ruhr Economic Papers 1097, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    4. Oriana Bandiera & Robin Burgess & Erika Deserranno & Ricardo Morel & Imran Rasul & Munshi Sulaiman & Jack Thiemel, 2022. "Microfinance and Diversification," Economica, London School of Economics and Political Science, vol. 89(S1), pages 239-275, June.
    5. Bernardus F Nazar Van Doornik & Armando Gomes & David Schoenherr & Janis Skrastins, 2023. "Financial access and labor market outcomes: evidence from credit lotteries," BIS Working Papers 1071, Bank for International Settlements.
    6. Lori Beaman & Dean Karlan & Bram Thuysbaert & Christopher Udry, 2023. "Selection Into Credit Markets: Evidence From Agriculture in Mali," Econometrica, Econometric Society, vol. 91(5), pages 1595-1627, September.
    7. Aparajithan Venkateswaran & Anirudh Sankar & Arun G. Chandrasekhar & Tyler H. McCormick, 2024. "Robustly estimating heterogeneity in factorial data using Rashomon Partitions," Papers 2404.02141, arXiv.org, revised Aug 2024.
    8. Abhijit Banerjee & Emily Breza & Esther Duflo & Cynthia Kinnan, 2019. "Can Microfinance Unlock a Poverty Trap for Some Entrepreneurs?," NBER Working Papers 26346, National Bureau of Economic Research, Inc.
    9. Jonathan Fu & Annette Krauss, 2024. "Preparing fertile ground: how does the quality of business environments affect MSE growth?," Small Business Economics, Springer, vol. 63(1), pages 51-103, June.
    10. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    11. Czura, Kristina, 2015. "Do flexible repayment schedules improve the impact of microcredit?," Discussion Papers in Economics 26608, University of Munich, Department of Economics.
    12. Karlan, Dean & Osman, Adam & Zinman, Jonathan, 2016. "Follow the money not the cash: Comparing methods for identifying consumption and investment responses to a liquidity shock," Journal of Development Economics, Elsevier, vol. 121(C), pages 11-23.
    13. Nakano, Yuko & Magezi, Eustadius F., 2020. "The impact of microcredit on agricultural technology adoption and productivity: Evidence from randomized control trial in Tanzania," World Development, Elsevier, vol. 133(C).
    14. Rafael P. Ribas, 2014. "Liquidity Constraints, Informal Financing, and Entrepreneurship: Direct and Indirect Effects of a Cash Transfer Programme," Working Papers 131, International Policy Centre for Inclusive Growth.
    15. Tamara Broderick & Ryan Giordano & Rachael Meager, 2020. "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?," Papers 2011.14999, arXiv.org, revised Jul 2023.
    16. Francisco J. Buera & Joseph P. Kaboski & Yongseok Shin, 2020. "Taking Stock of the Evidence on Microfinancial Interventions," Review, Federal Reserve Bank of St. Louis, vol. 102(2), pages 173-202, May.
    17. Chowdhury, Shyamal & Smits, Joeri & Sun, Qigang, 2020. "Contract structure, time preference, and technology adoption," GLO Discussion Paper Series 633, Global Labor Organization (GLO).
    18. João Paulo Coelho Ribeiro & Fábio Duarte & Ana Paula Matias Gama, 2022. "Does microfinance foster the development of its clients? A bibliometric analysis and systematic literature review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
    19. Abhijit Banerjee & Esther Duflo & Richard Hornbeck, 2018. "How Much do Existing Borrowers Value Microfinance? Evidence from an Experiment on Bundling Microcredit and Insurance," Economica, London School of Economics and Political Science, vol. 85(340), pages 671-700, October.
    20. Emmanuel Kwablah Apiors & Aya Suzuki, 2018. "Mobile Money, Individuals’ Payments, Remittances, and Investments: Evidence from the Ashanti Region, Ghana," Sustainability, MDPI, vol. 10(5), pages 1-26, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.14635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.