Machine Learning Who to Nudge: Causal vs Predictive Targeting in a Field Experiment on Student Financial Aid Renewal
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Athey, Susan & Keleher, Niall & Spiess, Jann, 2023. "Machine Learning Who to Nudge: Causal vs Predictive Targeting in a Field Experiment on Student Financial Aid Renewal," Research Papers 4146, Stanford University, Graduate School of Business.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chowdhury, Shyamal & Hasan, Syed & Sharma, Uttam, 2024. "The Role of Trainee Selection in the Effectiveness of Vocational Training: Evidence from a Randomized Controlled Trial in Nepal," IZA Discussion Papers 16705, Institute of Labor Economics (IZA).
- Kirill Ponomarev & Vira Semenova, 2024. "On the Lower Confidence Band for the Optimal Welfare," Papers 2410.07443, arXiv.org, revised Oct 2024.
- Susan Athey & Emil Palikot, 2024.
"The value of non-traditional credentials in the labor market,"
Papers
2405.00247, arXiv.org.
- Athey, Susan & Palikot, Emil, 2024. "The Value of Non-traditional Credentials in the Labor Market," Research Papers 4189, Stanford University, Graduate School of Business.
- Anya Shchetkina & Ron Berman, 2024. "When Is Heterogeneity Actionable for Personalization?," Papers 2411.16552, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-11-06 (Big Data)
- NEP-CMP-2023-11-06 (Computational Economics)
- NEP-EXP-2023-11-06 (Experimental Economics)
- NEP-NUD-2023-11-06 (Nudge and Boosting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.08672. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.