IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.16636.html
   My bibliography  Save this paper

A probabilistic approach to continuous differentiability of optimal stopping boundaries

Author

Listed:
  • Tiziano De Angelis
  • Damien Lamberton

Abstract

We obtain the first probabilistic proof of continuous differentiability of time-dependent optimal boundaries in optimal stopping problems. The underlying stochastic dynamics is a one-dimensional, time-inhomogeneous diffusion. The gain function is also time-inhomogeneous and not necessarily smooth. Moreover, we include state-dependent discount rate and the time-horizon can be either finite or infinite. Our arguments of proof are of a local nature that allows us to obtain the result under more general conditions than those used in the PDE literature. As a byproduct of our main result we also obtain the first probabilistic proof of the link between the value function of an optimal stopping problem and the solution of the Stefan's problem.

Suggested Citation

  • Tiziano De Angelis & Damien Lamberton, 2024. "A probabilistic approach to continuous differentiability of optimal stopping boundaries," Papers 2405.16636, arXiv.org.
  • Handle: RePEc:arx:papers:2405.16636
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.16636
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. D. Evans & R. Kuske & Joseph B. Keller, 2002. "American options on assets with dividends near expiry," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 219-237, July.
    2. Guy Barles & Julien Burdeau & Marc Romano & Nicolas Samsoen, 1995. "Critical Stock Price Near Expiration," Mathematical Finance, Wiley Blackwell, vol. 5(2), pages 77-95, April.
    3. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    2. Damien Lamberton & Mohammed Mikou, 2013. "Exercise boundary of the American put near maturity in an exponential Lévy model," Finance and Stochastics, Springer, vol. 17(2), pages 355-394, April.
    3. Anna Battauz & Marzia De Donno & Alessandro Sbuelz, 2015. "Real Options and American Derivatives: The Double Continuation Region," Management Science, INFORMS, vol. 61(5), pages 1094-1107, May.
    4. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
    5. Chung, San-Lin & Hung, Mao-Wei & Wang, Jr-Yan, 2010. "Tight bounds on American option prices," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 77-89, January.
    6. Anna Battauz & Marzia De Donno & Janusz Gajda & Alessandro Sbuelz, 2022. "Optimal exercise of American put options near maturity: A new economic perspective," Review of Derivatives Research, Springer, vol. 25(1), pages 23-46, April.
    7. Ziwei Ke & Joanna Goard, 2019. "Penalty American Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-32, March.
    8. Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
    9. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    10. Wenting Chen & Song-Ping Zhu, 2022. "On the Asymptotic Behavior of the Optimal Exercise Price Near Expiry of an American Put Option under Stochastic Volatility," JRFM, MDPI, vol. 15(5), pages 1-19, April.
    11. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "Nonparametric estimation of American options' exercise boundaries and call prices," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1829-1857, October.
    12. Chung, Y. Peter & Johnson, Herb & Polimenis, Vassilis, 2011. "The critical stock price for the American put option," Finance Research Letters, Elsevier, vol. 8(1), pages 8-14, March.
    13. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
    14. Denis Veliu & Roberto De Marchis & Mario Marino & Antonio Luciano Martire, 2022. "An Alternative Numerical Scheme to Approximate the Early Exercise Boundary of American Options," Mathematics, MDPI, vol. 11(1), pages 1-12, December.
    15. Leunglung Chan & Song-Ping Zhu, 2021. "An Analytic Approach for Pricing American Options with Regime Switching," JRFM, MDPI, vol. 14(5), pages 1-20, April.
    16. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
    17. Zhu, Song-Ping & Chen, Wen-Ting, 2013. "An inverse finite element method for pricing American options," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 231-250.
    18. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    19. Maria do Rosário Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing American Call Option by the Black-Scholes Equation with a Nonlinear Volatility Function," Working Papers REM 2017/18, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    20. Rachel Kuske & Joseph Keller, 1998. "Optimal exercise boundary for an American put option," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(2), pages 107-116.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.16636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.