IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.02919.html
   My bibliography  Save this paper

Hedge Error Analysis In Black Scholes Option Pricing Model: An Asymptotic Approach Towards Finite Difference

Author

Listed:
  • Agni Rakshit
  • Gautam Bandyopadhyay
  • Tanujit Chakraborty

Abstract

The Black-Scholes option pricing model remains a cornerstone in financial mathematics, yet its application is often challenged by the need for accurate hedging strategies, especially in dynamic market environments. This paper presents a rigorous analysis of hedge errors within the Black-Scholes framework, focusing on the efficacy of finite difference techniques in calculating option sensitivities. Employing an asymptotic approach, we investigate the behavior of hedge errors under various market conditions, emphasizing the implications for risk management and portfolio optimization. Through theoretical analysis and numerical simulations, we demonstrate the effectiveness of our proposed method in reducing hedge errors and enhancing the robustness of option pricing models. Our findings provide valuable insights into improving the accuracy of hedging strategies and advancing the understanding of option pricing in financial markets.

Suggested Citation

  • Agni Rakshit & Gautam Bandyopadhyay & Tanujit Chakraborty, 2024. "Hedge Error Analysis In Black Scholes Option Pricing Model: An Asymptotic Approach Towards Finite Difference," Papers 2405.02919, arXiv.org.
  • Handle: RePEc:arx:papers:2405.02919
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.02919
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    2. E Saliby & R J Paul, 2009. "A farewell to the use of antithetic variates in Monte Carlo simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 1026-1035, July.
    3. Yunyu Zhang, 2020. "The value of Monte Carlo model-based variance reduction technology in the pricing of financial derivatives," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-13, February.
    4. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    5. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    6. Rania Hentati & Ameur Kaffel & Jean-Luc Prigent, 2010. "Dynamic versus static optimization of hedge fund portfolios: The relevance of performance measures," Post-Print hal-00608962, HAL.
    7. J. Akahori & F. Barsotti & Y. Imamura, 2023. "Hedging error as generalized timing risk," Quantitative Finance, Taylor & Francis Journals, vol. 23(4), pages 693-703, April.
    8. Sangkwon Kim & Darae Jeong & Chaeyoung Lee & Junseok Kim, 2020. "Finite Difference Method for the Multi-Asset Black–Scholes Equations," Mathematics, MDPI, vol. 8(3), pages 1-17, March.
    9. Evert Wipplinger, 2008. "Jim Gatheral: The volatility surface, a practitioner’s guide," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 22(1), pages 93-94, March.
    10. Takaki Hayashi & Per A. Mykland, 2005. "Evaluating Hedging Errors: An Asymptotic Approach," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 309-343, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    2. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    3. Romuald Elie & Emmanuel Lépinette, 2015. "Approximate hedging for nonlinear transaction costs on the volume of traded assets," Finance and Stochastics, Springer, vol. 19(3), pages 541-581, July.
    4. Masaaki Fukasawa, 2012. "Efficient Discretization of Stochastic Integrals," Papers 1204.0637, arXiv.org.
    5. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    6. Simon F'ecamp & Joseph Mikael & Xavier Warin, 2019. "Risk management with machine-learning-based algorithms," Papers 1902.05287, arXiv.org, revised Aug 2020.
    7. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    8. Masaaki Fukasawa, 2014. "Efficient discretization of stochastic integrals," Finance and Stochastics, Springer, vol. 18(1), pages 175-208, January.
    9. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    10. Roza Galeeva & Ehud Ronn, 2022. "Oil futures volatility smiles in 2020: Why the bachelier smile is flatter," Review of Derivatives Research, Springer, vol. 25(2), pages 173-187, July.
    11. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    12. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    13. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    14. Maria do Rosário Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing American Call Option by the Black-Scholes Equation with a Nonlinear Volatility Function," Working Papers REM 2017/18, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    15. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
    16. Luca Di Persio & Luca Prezioso & Kai Wallbaum, 2019. "Closed-End Formula for options linked to Target Volatility Strategies," Papers 1902.08821, arXiv.org.
    17. Mastinšek Miklavž, 2015. "Reduction of the Mean Hedging Transaction Costs / Redukcija povprečnih transakcijskih stroškov hedging tehnike," Naše gospodarstvo/Our economy, Sciendo, vol. 61(5), pages 23-31, October.
    18. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    19. G. D. Gettinby & C. D. Sinclair & D. M. Power & R. A. Brown, 2004. "An Analysis of the Distribution of Extreme Share Returns in the UK from 1975 to 2000," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 607-646, June.
    20. Rutger-Jan Lange & Coen N. Teulings, 2021. "The option value of vacant land: Don't build when demand for housing is booming," Tinbergen Institute Discussion Papers 21-022/IV, Tinbergen Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.02919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.