IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.00606.html
   My bibliography  Save this paper

Some properties of Euler capital allocation

Author

Listed:
  • Lars Holden

Abstract

The paper discusses capital allocation using the Euler formula and focuses on the risk measures Value-at-Risk (VaR) and Expected shortfall (ES). Some new results connected to this capital allocation is known. Two examples illustrate that capital allocation with VaR is not monotonous which may be surprising since VaR is monotonous. A third example illustrates why the same risk measure should be used in capital allocation as in the evaluation of the total portfolio. We show how simulation may be used in order to estimate the expected Return on risk adjusted capital in the commitment period of an asset. Finally, we show how Markov chain Monte Carlo may be used in the estimation of the capital allocation.

Suggested Citation

  • Lars Holden, 2024. "Some properties of Euler capital allocation," Papers 2405.00606, arXiv.org.
  • Handle: RePEc:arx:papers:2405.00606
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.00606
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fischer, T., 2003. "Risk capital allocation by coherent risk measures based on one-sided moments," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 135-146, February.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    4. Dirk Tasche, 2005. "Measuring sectoral diversification in an asymptotic multi-factor framework," Papers physics/0505142, arXiv.org, revised Jul 2006.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gürtler, Marc & Hibbeln, Martin & Vöhringer, Clemens, 2007. "Measuring concentration risk for regulatory purposes," Working Papers IF26V4, Technische Universität Braunschweig, Institute of Finance.
    2. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    3. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    4. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    5. Nan Zhang & Heng Xu, 2024. "Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning," Information Systems Research, INFORMS, vol. 35(2), pages 469-488, June.
    6. Eugene N. Gurenko & Alexander Itigin, 2009. "Solvency Measures for Insurance Companies : Is There a Room for Improvement?," World Bank Publications - Reports 12831, The World Bank Group.
    7. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    8. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    9. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    10. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    11. Thilini Mahanama & Abootaleb Shirvani & Svetlozar Rachev, 2022. "A Natural Disasters Index," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 263-284, April.
    12. Tiantian Li & Young Shin Kim & Qi Fan & Fumin Zhu, 2021. "Aumann–Serrano index of risk in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 197-217, October.
    13. Castro, Cesar D., 2015. "Riesgo sistémico en el sistema financiero peruano," Revista Estudios Económicos, Banco Central de Reserva del Perú, issue 29, pages 77-90.
    14. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    15. S. Geissel & H. Graf & J. Herbinger & F. T. Seifried, 2022. "Portfolio optimization with optimal expected utility risk measures," Annals of Operations Research, Springer, vol. 309(1), pages 59-77, February.
    16. Grechuk, Bogdan, 2023. "Extended gradient of convex function and capital allocation," European Journal of Operational Research, Elsevier, vol. 305(1), pages 429-437.
    17. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    18. Alex Karagrigoriou & George-Jason Siouris & Despoina Skilogianni, 2019. "Adjusted Evaluation Measures for Asymmetrically Important Data," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 4(1), pages 41-66, June.
    19. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    20. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.00606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.