IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.00357.html
   My bibliography  Save this paper

Optimal nonparametric estimation of the expected shortfall risk

Author

Listed:
  • Daniel Bartl
  • Stephan Eckstein

Abstract

We address the problem of estimating the expected shortfall risk of a financial loss using a finite number of i.i.d. data. It is well known that the classical plug-in estimator suffers from poor statistical performance when faced with (heavy-tailed) distributions that are commonly used in financial contexts. Further, it lacks robustness, as the modification of even a single data point can cause a significant distortion. We propose a novel procedure for the estimation of the expected shortfall and prove that it recovers the best possible statistical properties (dictated by the central limit theorem) under minimal assumptions and for all finite numbers of data. Further, this estimator is adversarially robust: even if a (small) proportion of the data is maliciously modified, the procedure continuous to optimally estimate the true expected shortfall risk. We demonstrate that our estimator outperforms the classical plug-in estimator through a variety of numerical experiments across a range of standard loss distributions.

Suggested Citation

  • Daniel Bartl & Stephan Eckstein, 2024. "Optimal nonparametric estimation of the expected shortfall risk," Papers 2405.00357, arXiv.org.
  • Handle: RePEc:arx:papers:2405.00357
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.00357
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlo Acerbi, 2007. "Coherent measures of risk in everyday market practice," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 359-364.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Paolo Crespi & Elisa Mastrogiacomo, 2020. "Qualitative robustness of set-valued value-at-risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 25-54, February.
    2. Pitera, Marcin & Schmidt, Thorsten, 2018. "Unbiased estimation of risk," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 133-145.
    3. Barczy, Mátyás & K. Nedényi, Fanni & Sütő, László, 2023. "Probability equivalent level of Value at Risk and higher-order Expected Shortfalls," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 107-128.
    4. Brandtner, Mario, 2018. "Expected Shortfall, spectral risk measures, and the aggravating effect of background risk, or: risk vulnerability and the problem of subadditivity," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 138-149.
    5. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    6. Songjiao Chen & William W. Wilson & Ryan Larsen & Bruce Dahl, 2015. "Investing in Agriculture as an Asset Class," Agribusiness, John Wiley & Sons, Ltd., vol. 31(3), pages 353-371, June.
    7. Alexandre Street, 2010. "On the Conditional Value-at-Risk probability-dependent utility function," Theory and Decision, Springer, vol. 68(1), pages 49-68, February.
    8. Rama Cont & Romain Deguest & Xuedong He, 2011. "Loss-Based Risk Measures," Working Papers hal-00629929, HAL.
    9. Anna E. Olkova, 2017. "Mutual Funds Performance Assessment Techniques: Comparative Analysis," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 3, pages 85-95, June.
    10. Marcin Pitera & Thorsten Schmidt, 2016. "Unbiased estimation of risk," Papers 1603.02615, arXiv.org, revised Aug 2017.
    11. Zou, Zhenfeng & Hu, Taizhong, 2024. "Adjusted higher-order expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 1-12.
    12. Larsen, Ryan A. & Vedenov, Dmitry V. & Leatham, David J., 2009. "Enterprise-level risk assessment of geographically diversified commercial farms: a copula approach," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 46763, Southern Agricultural Economics Association.
    13. Rama Cont & Romain Deguest & Xuedong He, 2011. "Loss-Based Risk Measures," Papers 1110.1436, arXiv.org, revised Apr 2013.
    14. Matyas Barczy & Fanni K. Ned'enyi & L'aszl'o SutH{o}, 2022. "Probability equivalent level of Value at Risk and higher-order Expected Shortfalls," Papers 2202.09770, arXiv.org, revised Nov 2022.
    15. Friesz, Melinda & Váradi, Kata, 2023. "Your skin or mine: Ensuring the viability of a central counterparty," Emerging Markets Review, Elsevier, vol. 57(C).
    16. Ruodu Wang & Johanna F. Ziegel, 2014. "Distortion Risk Measures and Elicitability," Papers 1405.3769, arXiv.org, revised May 2014.
    17. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    18. Mandal, Maitreyi & Lagerkvist, Carl Johan, 2012. "A Comparison of Traditional and Copula based VaR with Agricultural portfolio," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124387, Agricultural and Applied Economics Association.
    19. Lamb, John D. & Tee, Kai-Hong, 2012. "Data envelopment analysis models of investment funds," European Journal of Operational Research, Elsevier, vol. 216(3), pages 687-696.
    20. Cont Rama & Deguest Romain & He Xue Dong, 2013. "Loss-based risk measures," Statistics & Risk Modeling, De Gruyter, vol. 30(2), pages 133-167, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.00357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.