IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.12581.html
   My bibliography  Save this paper

Two-step Estimation of Network Formation Models with Unobserved Heterogeneities and Strategic Interactions

Author

Listed:
  • Shaomin Wu

Abstract

In this paper, I characterize the network formation process as a static game of incomplete information, where the latent payoff of forming a link between two individuals depends on the structure of the network, as well as private information on agents' attributes. I allow agents' private unobserved attributes to be correlated with observed attributes through individual fixed effects. Using data from a single large network, I propose a two-step estimator for the model primitives. In the first step, I estimate agents' equilibrium beliefs of other people's choice probabilities. In the second step, I plug in the first-step estimator to the conditional choice probability expression and estimate the model parameters and the unobserved individual fixed effects together using Joint MLE. Assuming that the observed attributes are discrete, I showed that the first step estimator is uniformly consistent with rate $N^{-1/4}$, where $N$ is the total number of linking proposals. I also show that the second-step estimator converges asymptotically to a normal distribution at the same rate.

Suggested Citation

  • Shaomin Wu, 2024. "Two-step Estimation of Network Formation Models with Unobserved Heterogeneities and Strategic Interactions," Papers 2404.12581, arXiv.org.
  • Handle: RePEc:arx:papers:2404.12581
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.12581
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuyang Sheng, 2020. "A Structural Econometric Analysis of Network Formation Games Through Subnetworks," Econometrica, Econometric Society, vol. 88(5), pages 1829-1858, September.
    2. Bryan S. Graham, 2017. "An econometric model of network formation with degree heterogeneity," CeMMAP working papers 08/17, Institute for Fiscal Studies.
    3. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    4. Bryan S. Graham, 2017. "An Econometric Model of Network Formation With Degree Heterogeneity," Econometrica, Econometric Society, vol. 85, pages 1033-1063, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. St'ephane Bonhomme & Kevin Dano, 2023. "Functional Differencing in Networks," Papers 2307.11484, arXiv.org.
    2. Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024. "Network and panel quantile effects via distribution regression," Journal of Econometrics, Elsevier, vol. 240(2).
    3. Bryan S. Graham & Andrin Pelican, 2023. "Scenario sampling for large supermodular games," CeMMAP working papers 15/23, Institute for Fiscal Studies.
    4. Lin, Zhongjian & Hu, Yingyao, 2024. "Binary choice with misclassification and social interactions, with an application to peer effects in attitude," Journal of Econometrics, Elsevier, vol. 238(1).
    5. Bryan S. Graham & Andrin Pelican, 2023. "Scenario Sampling for Large Supermodular Games," Papers 2307.11857, arXiv.org.
    6. Candelaria, Luis E. & Ura, Takuya, 2023. "Identification and inference of network formation games with misclassified links," Journal of Econometrics, Elsevier, vol. 235(2), pages 862-891.
    7. Alonso Alfaro-Urena & Paolo Zacchia, 2024. "Matching to Suppliers in the Production Network: an Empirical Framework," CERGE-EI Working Papers wp775, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    8. Francesco Bartolucci & Francesco Valentini & Claudia Pigini, 2023. "Recursive Computation of the Conditional Probability Function of the Quadratic Exponential Model for Binary Panel Data," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 529-557, February.
    9. L. Sanna Stephan, 2024. "Semiparametric Estimation of Individual Coefficients in a Dyadic Link Formation Model Lacking Observable Characteristics," Papers 2408.04552, arXiv.org.
    10. Mathieu Lambotte & Sandrine Mathy & Anna Risch & Carole Treibich, 2022. "Spreading active transportation: peer effects and key players in the workplace," Post-Print hal-03702684, HAL.
    11. Luis Alvarez & Cristine Pinto & Vladimir Ponczek, 2022. "Homophily in preferences or meetings? Identifying and estimating an iterative network formation model," Papers 2201.06694, arXiv.org, revised Mar 2024.
    12. Valeria Costantini & Valerio Leone Sciabolazza & Elena Paglialunga, 2023. "Network-driven positive externalities in clean energy technology production: the case of energy efficiency in the EU residential sector," The Journal of Technology Transfer, Springer, vol. 48(2), pages 716-748, April.
    13. Weidner, Martin & Zylkin, Thomas, 2021. "Bias and consistency in three-way gravity models," Journal of International Economics, Elsevier, vol. 132(C).
    14. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    15. David W. Hughes, 2021. "Estimating Nonlinear Network Data Models with Fixed Effects," Boston College Working Papers in Economics 1058, Boston College Department of Economics.
    16. Luis E. Candelaria & Yichong Zhang, 2024. "Robust Inference in Locally Misspecified Bipartite Networks," Papers 2403.13725, arXiv.org.
    17. Qiuping Wang & Yuan Zhang & Ting Yan, 2023. "Asymptotic theory in network models with covariates and a growing number of node parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 369-392, April.
    18. Gao, Wayne Yuan & Li, Ming & Xu, Sheng, 2023. "Logical differencing in dyadic network formation models with nontransferable utilities," Journal of Econometrics, Elsevier, vol. 235(1), pages 302-324.
    19. Bo E Honoré & Áureo de Paula, 2021. "Identification in simple binary outcome panel data models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 78-93.
    20. Francesco Bartolucci & Claudia Pigini & Francesco Valentini, 2024. "MCMC conditional maximum likelihood for the two-way fixed-effects logit," Econometric Reviews, Taylor & Francis Journals, vol. 43(6), pages 379-404, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.12581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.