IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.06472.html
   My bibliography  Save this paper

High-skilled Human Workers in Non-Routine Jobs are Susceptible to AI Automation but Wage Benefits Differ between Occupations

Author

Listed:
  • Pelin Ozgul
  • Marie-Christine Fregin
  • Michael Stops
  • Simon Janssen
  • Mark Levels

Abstract

Artificial Intelligence (AI) will change human work by taking over specific job tasks, but there is a debate which tasks are susceptible to automation, and whether AI will augment or replace workers and affect wages. By combining data on job tasks with a measure of AI susceptibility, we show that more highly skilled workers are more susceptible to AI automation, and that analytical non-routine tasks are at risk to be impacted by AI. Moreover, we observe that wage growth premiums for the lowest and the highest required skill level appear unrelated to AI susceptibility and that workers in occupations with many routine tasks saw higher wage growth if their work was more strongly susceptible to AI. Our findings imply that AI has the potential to affect human workers differently than canonical economic theories about the impact of technology on work these theories predict.

Suggested Citation

  • Pelin Ozgul & Marie-Christine Fregin & Michael Stops & Simon Janssen & Mark Levels, 2024. "High-skilled Human Workers in Non-Routine Jobs are Susceptible to AI Automation but Wage Benefits Differ between Occupations," Papers 2404.06472, arXiv.org.
  • Handle: RePEc:arx:papers:2404.06472
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.06472
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    2. Daron Acemoglu & David Autor & Jonathon Hazell & Pascual Restrepo, 2022. "Artificial Intelligence and Jobs: Evidence from Online Vacancies," Journal of Labor Economics, University of Chicago Press, vol. 40(S1), pages 293-340.
    3. Maarten Goos & Alan Manning, 2007. "Lousy and Lovely Jobs: The Rising Polarization of Work in Britain," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 118-133, February.
    4. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    5. Daron Acemoglu & Pascual Restrepo, 2020. "Unpacking Skill Bias: Automation and New Tasks," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 356-361, May.
    6. David Card & John E. DiNardo, 2002. "Skill-Biased Technological Change and Rising Wage Inequality: Some Problems and Puzzles," Journal of Labor Economics, University of Chicago Press, vol. 20(4), pages 733-783, October.
    7. Erik Brynjolfsson & Tom Mitchell & Daniel Rock, 2018. "What Can Machines Learn, and What Does It Mean for Occupations and the Economy?," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 43-47, May.
    8. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    9. Ljubica Nedelkoska & Glenda Quintini, 2018. "Automation, skills use and training," OECD Social, Employment and Migration Working Papers 202, OECD Publishing.
    10. Jeff Borland & Michael Coelli, 2017. "Are Robots Taking Our Jobs?," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 50(4), pages 377-397, December.
    11. Alexandre Georgieff & Raphaela Hyee, 2021. "Artificial intelligence and employment: New cross-country evidence," OECD Social, Employment and Migration Working Papers 265, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.
    2. Ghodsi, Mahdi & Stehrer, Robert & Barišić, Antea, 2024. "Assessing the impact of new technologies on wages and labour income shares," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    3. Albanesi, Stefania & Dias da Silva, Antonio & Jimeno, Juan Francisco & Lamo, Ana & Wabitsch, Alena, 2023. "New Technologies and Jobs in Europe," CEPR Discussion Papers 18220, C.E.P.R. Discussion Papers.
    4. Goos, Maarten & Rademakers, Emilie & Röttger, Ronja, 2021. "Routine-Biased technical change: Individual-Level evidence from a plant closure," Research Policy, Elsevier, vol. 50(7).
    5. Hensvik, Lena & Skans, Oskar Nordström, 2023. "The skill-specific impact of past and projected occupational decline," Labour Economics, Elsevier, vol. 81(C).
    6. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    7. Corrales‑Herrero, Helena & Rodriguez-Prado, Beatriz, 2022. "Mapping the Occupations of Recent Graduates. The Role of Academic Background in the Digital Era," MPRA Paper 123226, University Library of Munich, Germany, revised 06 Aug 2024.
    8. Zhang, Xinchun & Sun, Murong & Liu, Jianxu & Xu, Aijia, 2024. "The nexus between industrial robot and employment in China: The effects of technology substitution and technology creation," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    9. Regina Pleninger & Dana Vorisek & Shu Yu & Gaurav Nayyar, 2024. "Digitalization and Inclusive Growth : A Review of the Evidence," Policy Research Working Paper Series 10941, The World Bank.
    10. Cirillo, Valeria & Evangelista, Rinaldo & Guarascio, Dario & Sostero, Matteo, 2021. "Digitalization, routineness and employment: An exploration on Italian task-based data," Research Policy, Elsevier, vol. 50(7).
    11. Heluo, Yuxi & Fabel, Oliver, 2024. "Job computerization, occupational employment and wages: A comparative study of the United States, Germany, and Japan," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    12. Helena Corrales-Herrero & Beatriz Rodríguez-Prado, 2024. "Mapping the Occupations of Recent Graduates. The Role of Academic Background in the Digital Era," Research in Higher Education, Springer;Association for Institutional Research, vol. 65(8), pages 1853-1882, December.
    13. David Marguerit, 2025. "Augmenting or Automating Labor? The Effect of AI Development on New Work, Employment, and Wages," Papers 2503.19159, arXiv.org.
    14. Ariell Reshef & Farid Toubal, 2024. "Automation, Techies, and Labor Market Restructuring," Post-Print hal-04837769, HAL.
    15. Enrico Maria Fenoaltea & Dario Mazzilli & Aurelio Patelli & Angelica Sbardella & Andrea Tacchella & Andrea Zaccaria & Marco Trombetti & Luciano Pietronero, 2024. "Follow the money: a startup-based measure of AI exposure across occupations, industries and regions," Papers 2412.04924, arXiv.org, revised Dec 2024.
    16. Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2022. "Robots and the origin of their labour-saving impact," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    17. Fernández-Macías, Enrique & Klenert, David & Antón, José-Ignacio, 2021. "Not so disruptive yet? Characteristics, distribution and determinants of robots in Europe," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 76-89.
    18. Ana Abeliansky & Klaus Prettner & Ernesto Rodríguez Crespo, 2024. "Climate change and automation: the emission effects of robot adoption," Department of Economics Working Papers wuwp370, Vienna University of Economics and Business, Department of Economics.
    19. Wang, Heting & Wang, Huijuan & Guan, Rong, 2024. "Digitalization of industries and labor mobility in China," China Economic Review, Elsevier, vol. 87(C).
    20. Liang, Peng & Liang, Lin & Tang, Xinhui, 2024. "The impact of digital-oriented mergers and acquisitions on enterprise labor demand," International Review of Financial Analysis, Elsevier, vol. 96(PB).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.06472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.