IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.04494.html
   My bibliography  Save this paper

Fast and simple inner-loop algorithms of static / dynamic BLP estimations

Author

Listed:
  • Takeshi Fukasawa

Abstract

This study investigates computationally efficient inner-loop algorithms for estimating static/dynamic BLP models. It provides the following ideas to reduce the number of inner-loop iterations: (1). Add a term concerning the outside option share in the BLP contraction mapping; (2). Analytically represent mean product utilities as a function of value functions and solve for the value functions (for dynamic BLP); (3). Combine an acceleration method of fixed point iterations, especially Anderson acceleration. They are independent and easy to implement. This study shows good performance of these methods by numerical experiments.

Suggested Citation

  • Takeshi Fukasawa, 2024. "Fast and simple inner-loop algorithms of static / dynamic BLP estimations," Papers 2404.04494, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2404.04494
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.04494
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oleksandr Shcherbakov, 2016. "Measuring consumer switching costs in the television industry," RAND Journal of Economics, RAND Corporation, vol. 47(2), pages 366-393, May.
    2. Gautam Gowrisankaran & Marc Rysman, 2012. "Dynamics of Consumer Demand for New Durable Goods," Journal of Political Economy, University of Chicago Press, vol. 120(6), pages 1173-1219.
    3. Jean‐Pierre Dubé & Jeremy T. Fox & Che‐Lin Su, 2012. "Improving the Numerical Performance of Static and Dynamic Aggregate Discrete Choice Random Coefficients Demand Estimation," Econometrica, Econometric Society, vol. 80(5), pages 2231-2267, September.
    4. Igal Hendel & Aviv Nevo, 2006. "Measuring the Implications of Sales and Consumer Inventory Behavior," Econometrica, Econometric Society, vol. 74(6), pages 1637-1673, November.
    5. Ariel Pakes & Paul McGuire, 1994. "Computing Markov-Perfect Nash Equilibria: Numerical Implications of a Dynamic Differentiated Product Model," RAND Journal of Economics, The RAND Corporation, vol. 25(4), pages 555-589, Winter.
    6. Hiroyuki Kasahara & Katsumi Shimotsu, 2012. "Sequential Estimation of Structural Models With a Fixed Point Constraint," Econometrica, Econometric Society, vol. 80(5), pages 2303-2319, September.
    7. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    8. Ravi Varadhan & Christophe Roland, 2008. "Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 335-353, June.
    9. Mortaza Jamshidian & Robert I. Jennrich, 1997. "Acceleration of the EM Algorithm by using Quasi‐Newton Methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 569-587.
    10. Mitsuru Igami, 2017. "Estimating the Innovator’s Dilemma: Structural Analysis of Creative Destruction in the Hard Disk Drive Industry, 1981–1998," Journal of Political Economy, University of Chicago Press, vol. 125(3), pages 798-847.
    11. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    12. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    13. Myrto Kalouptsidi, 2012. "From market shares to consumer types: Duality in differentiated product demand estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 333-342, March.
    14. Sun, Yutec & Ishihara, Masakazu, 2019. "A computationally efficient fixed point approach to dynamic structural demand estimation," Journal of Econometrics, Elsevier, vol. 208(2), pages 563-584.
    15. Victor Aguirregabiria & Mathieu Marcoux, 2021. "Imposing equilibrium restrictions in the estimation of dynamic discrete games," Quantitative Economics, Econometric Society, vol. 12(4), pages 1223-1271, November.
    16. James Levinsohn & Steven Berry & Ariel Pakes, 1999. "Voluntary Export Restraints on Automobiles: Evaluating a Trade Policy," American Economic Review, American Economic Association, vol. 89(3), pages 400-430, June.
    17. Odran Bonnet & Alfred Galichon & Yu-Wei Hsieh & Keith O’Hara & Matt Shum, 2022. "Yogurts Choose Consumers? Estimation of Random-Utility Models via Two-Sided Matching," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(6), pages 3085-3114.
    18. Jinhyuk Lee & Kyoungwon Seo, 2015. "A computationally fast estimator for random coefficients logit demand models using aggregate data," RAND Journal of Economics, RAND Corporation, vol. 46(1), pages 86-102, March.
    19. Myrto Kalouptsidi & Paul T. Scott & Eduardo Souza-Rodrigues, 2020. "Linear IV Regression Estimators for Structural Dynamic Discrete Choice Models," Working Papers tecipa-674, University of Toronto, Department of Economics.
    20. Laura Grigolon & Frank Verboven, 2014. "Nested Logit or Random Coefficients Logit? A Comparison of Alternative Discrete Choice Models of Product Differentiation," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 916-935, December.
    21. Mario J. Miranda & Paul L. Fackler, 2004. "Applied Computational Economics and Finance," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262633094, December.
    22. Steven Berry & Ariel Pakes, 2007. "The Pure Characteristics Demand Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1193-1225, November.
    23. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    24. Hiroyuki Kasahara & Katsumi Shimotsu, 2009. "Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices," Econometrica, Econometric Society, vol. 77(1), pages 135-175, January.
    25. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    26. Christopher Conlon & Jeff Gortmaker, 2020. "Best practices for differentiated products demand estimation with PyBLP," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 1108-1161, December.
    27. Doi, Naoshi, 2022. "A simple method to estimate discrete-type random coefficients logit models," International Journal of Industrial Organization, Elsevier, vol. 81(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pál, László & Sándor, Zsolt, 2023. "Comparing procedures for estimating random coefficient logit demand models with a special focus on obtaining global optima," International Journal of Industrial Organization, Elsevier, vol. 88(C).
    2. Sun, Yutec & Ishihara, Masakazu, 2019. "A computationally efficient fixed point approach to dynamic structural demand estimation," Journal of Econometrics, Elsevier, vol. 208(2), pages 563-584.
    3. Christopher R. Knittel & Konstantinos Metaxoglou, 2008. "Estimation of Random Coefficient Demand Models: Challenges, Difficulties and Warnings," NBER Working Papers 14080, National Bureau of Economic Research, Inc.
    4. Laura Grigolon, 2021. "Blurred boundaries: A flexible approach for segmentation applied to the car market," Quantitative Economics, Econometric Society, vol. 12(4), pages 1273-1305, November.
    5. Victor Aguirregabiria & Margaret Slade, 2017. "Empirical models of firms and industries," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1445-1488, December.
    6. Mogens Fosgerau & Julien Monardo & André de Palma, 2024. "The Inverse Product Differentiation Logit Model," American Economic Journal: Microeconomics, American Economic Association, vol. 16(4), pages 329-370, November.
    7. Cheng Chou & Tim Derdenger & Vineet Kumar, 2019. "Linear Estimation of Aggregate Dynamic Discrete Demand for Durable Goods: Overcoming the Curse of Dimensionality," Marketing Science, INFORMS, vol. 38(5), pages 888-909, September.
    8. Takeshi Fukasawa, 2024. "Simple method for efficiently solving dynamic models with continuous actions using policy gradient," Papers 2407.04227, arXiv.org.
    9. Doi, Naoshi, 2022. "A simple method to estimate discrete-type random coefficients logit models," International Journal of Industrial Organization, Elsevier, vol. 81(C).
    10. Takeshi Fukasawa, 2022. "The Biases in Applying Static Demand Models under Dynamic Demand," Discussion Paper Series DP2022-18, Research Institute for Economics & Business Administration, Kobe University, revised Jul 2022.
    11. Christopher Conlon & Jeff Gortmaker, 2020. "Best practices for differentiated products demand estimation with PyBLP," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 1108-1161, December.
    12. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    13. Chan, Tat Y. & Narasimhan, Chakravarthi & Yoon, Yeujun, 2017. "Advertising and price competition in a manufacturer-retailer channel," International Journal of Research in Marketing, Elsevier, vol. 34(3), pages 694-716.
    14. Javier D. Donna, 2021. "Measuring long‐run gasoline price elasticities in urban travel demand," RAND Journal of Economics, RAND Corporation, vol. 52(4), pages 945-994, December.
    15. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    16. Lou, Weifang & Prentice, David & Yin, Xiangkang, 2008. "The Effects of Product Ageing on Demand: The Case of Digital Cameras," MPRA Paper 13407, University Library of Munich, Germany.
    17. Victor Aguirregabiria & Allan Collard-Wexler & Stephen P. Ryan, 2021. "Dynamic Games in Empirical Industrial Organization," NBER Working Papers 29291, National Bureau of Economic Research, Inc.
    18. Byrne, David P. & Imai, Susumu & Jain, Neelam & Sarafidis, Vasilis, 2022. "Instrument-free identification and estimation of differentiated products models using cost data," Journal of Econometrics, Elsevier, vol. 228(2), pages 278-301.
    19. Gautam Gowrisankaran & Marc Rysman, 2012. "Dynamics of Consumer Demand for New Durable Goods," Journal of Political Economy, University of Chicago Press, vol. 120(6), pages 1173-1219.
    20. Joao Macieira & Pedro Pereira & Joao Vareda, 2013. "Bundling Incentives in Markets with Product Complementarities: The Case of Triple-Play," Working Papers 13-15, NET Institute.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.04494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.