IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.00825.html
   My bibliography  Save this paper

Using Machine Learning to Forecast Market Direction with Efficient Frontier Coefficients

Author

Listed:
  • Nolan Alexander
  • William Scherer

Abstract

We propose a novel method to improve estimation of asset returns for portfolio optimization. This approach first performs a monthly directional market forecast using an online decision tree. The decision tree is trained on a novel set of features engineered from portfolio theory: the efficient frontier functional coefficients. Efficient frontiers can be decomposed to their functional form, a square-root second-order polynomial, and the coefficients of this function captures the information of all the constituents that compose the market in the current time period. To make these forecasts actionable, these directional forecasts are integrated to a portfolio optimization framework using expected returns conditional on the market forecast as an estimate for the return vector. This conditional expectation is calculated using the inverse Mills ratio, and the Capital Asset Pricing Model is used to translate the market forecast to individual asset forecasts. This novel method outperforms baseline portfolios, as well as other feature sets including technical indicators and the Fama-French factors. To empirically validate the proposed model, we employ a set of market sector ETFs.

Suggested Citation

  • Nolan Alexander & William Scherer, 2024. "Using Machine Learning to Forecast Market Direction with Efficient Frontier Coefficients," Papers 2404.00825, arXiv.org.
  • Handle: RePEc:arx:papers:2404.00825
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.00825
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    3. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    4. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 25(2), pages 65-86.
    5. Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
    6. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    7. Li, Quan & Reuveny, Rafael, 2003. "Economic Globalization and Democracy: An Empirical Analysis," British Journal of Political Science, Cambridge University Press, vol. 33(1), pages 29-54, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenzelburger, Jan, 2008. "A Note on the Two-fund Separation Theorem," MPRA Paper 11014, University Library of Munich, Germany, revised 31 Sep 2008.
    2. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    3. David S. Jones & V. Vance Roley, 1981. "Bliss Points in Mean-Variance Portfolio Models," NBER Technical Working Papers 0019, National Bureau of Economic Research, Inc.
    4. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    5. Kusdhianto SETIAWAN, 2012. "Reexamination Of Dynamic Betainternational Capm: A Sur With Garch Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 10, pages 105-127, December.
    6. Merton, Robert, 1990. "Capital market theory and the pricing of financial securities," Handbook of Monetary Economics, in: B. M. Friedman & F. H. Hahn (ed.), Handbook of Monetary Economics, edition 1, volume 1, chapter 11, pages 497-581, Elsevier.
    7. Rafael Lazimy, 2007. "Portfolio selection with divisible and indivisible assets: Mathematical algorithm and economic analysis," Annals of Operations Research, Springer, vol. 152(1), pages 273-295, July.
    8. Niels Wesselhöfft & Wolfgang K. Härdle, 2020. "Risk-Constrained Kelly Portfolios Under Alpha-Stable Laws," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 801-826, March.
    9. Merton, Robert C., 1993. "On the microeconomic theory of investment under uncertainty," Handbook of Mathematical Economics, in: K. J. Arrow & M.D. Intriligator (ed.), Handbook of Mathematical Economics, edition 4, volume 2, chapter 13, pages 601-669, Elsevier.
    10. Marco Di Francesco, 2021. "Portfolio optimization under solvency II: a multi-objective approach incorporating market views and real-world constraints," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 269-294, June.
    11. Kusdhianto Setiawan & Koichi Maekawa, 2014. "Estimation Of Vector Error Correction Model With Garch Errors: Monte Carlo Simulation And Applications," EcoMod2014 7002, EcoMod.
    12. Jan Wenzelburger, 2010. "The two-fund separation theorem revisited," Annals of Finance, Springer, vol. 6(2), pages 221-239, March.
    13. Teresa Garcia & Daniel Borrego, 2017. "Markowitz Efficient Frontier And Capital Market Line – Evidence From The Portuguese Stock Market," Portuguese Journal of Management Studies, ISEG, Universidade de Lisboa, vol. 22(1), pages 3-23.
    14. Bai, Zhidong & Phoon, Kok Fai & Wang, Keyan & Wong, Wing-Keung, 2013. "The performance of commodity trading advisors: A mean-variance-ratio test approach," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 188-201.
    15. repec:ebl:ecbull:v:7:y:2004:i:3:p:1-10 is not listed on IDEAS
    16. De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
    17. Woll, Oliver, 2015. "Mean-risk hedging strategies in electricity markets with limited liquidity," ZEW Discussion Papers 15-056, ZEW - Leibniz Centre for European Economic Research.
    18. Andrew E. B. Lim & Xun Yu Zhou, 2002. "Mean-Variance Portfolio Selection with Random Parameters in a Complete Market," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 101-120, February.
    19. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    20. Taras Bodnar & Arjun K. Gupta & Valdemar Vitlinskyi & Taras Zabolotskyy, 2019. "Statistical Inference for the Beta Coefficient," Risks, MDPI, vol. 7(2), pages 1-14, May.
    21. Chun Hung Chiu & Xun Yu Zhou, 2011. "The premium of dynamic trading," Quantitative Finance, Taylor & Francis Journals, vol. 11(1), pages 115-123.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.00825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.