IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i2p56-d231435.html
   My bibliography  Save this article

Statistical Inference for the Beta Coefficient

Author

Listed:
  • Taras Bodnar

    (Department of Mathematics, Stockholm University, Roslagsvägen 101, SE-10691 Stockholm, Sweden)

  • Arjun K. Gupta

    (Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA)

  • Valdemar Vitlinskyi

    (Department of Economic and Mathematical Modelling, Kyiv National Economic University, Peremoga Avenue 54/1, 03680 Kyiv, Ukraine)

  • Taras Zabolotskyy

    (Department of Programming, Ivan Franko Lviv National University, Universytetska str. 1, 79000 Lviv, Ukraine)

Abstract

The beta coefficient plays a crucial role in finance as a risk measure of a portfolio in comparison to the benchmark portfolio. In the paper, we investigate statistical properties of the sample estimator for the beta coefficient. Assuming that both the holding portfolio and the benchmark portfolio consist of the same assets whose returns are multivariate normally distributed, we provide the finite sample and the asymptotic distributions of the sample estimator for the beta coefficient. These findings are used to derive a statistical test for the beta coefficient and to construct a confidence interval for the beta coefficient. Moreover, we show that the sample estimator is an unbiased estimator for the beta coefficient. The theoretical results are implemented in an empirical study.

Suggested Citation

  • Taras Bodnar & Arjun K. Gupta & Valdemar Vitlinskyi & Taras Zabolotskyy, 2019. "Statistical Inference for the Beta Coefficient," Risks, MDPI, vol. 7(2), pages 1-14, May.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:2:p:56-:d:231435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/2/56/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/2/56/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    2. Alexander, Gordon J. & Baptista, Alexandre M., 2002. "Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1159-1193, July.
    3. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    4. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    5. Keith Vorkink & Douglas J. Hodgson & Oliver Linton, 2002. "Testing the capital asset pricing model efficiently under elliptical symmetry: a semiparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 617-639.
    6. Taras Bodnar & Wolfgang Schmid, 2009. "Econometrical analysis of the sample efficient frontier," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 317-335.
    7. Frahm, Gabriel & Memmel, Christoph, 2010. "Dominating estimators for minimum-variance portfolios," Journal of Econometrics, Elsevier, vol. 159(2), pages 289-302, December.
    8. Wolfgang Schmid & Taras Zabolotskyy, 2008. "On the existence of unbiased estimators for the portfolio weights obtained by maximizing the Sharpe ratio," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 29-34, February.
    9. Gibbons, Michael R & Ross, Stephen A & Shanken, Jay, 1989. "A Test of the Efficiency of a Given Portfolio," Econometrica, Econometric Society, vol. 57(5), pages 1121-1152, September.
    10. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    11. Bodnar Taras & Schmid Wolfgang & Zabolotskyy Tara, 2012. "Minimum VaR and minimum CVaR optimal portfolios: Estimators, confidence regions, and tests," Statistics & Risk Modeling, De Gruyter, vol. 29(4), pages 281-314, November.
    12. repec:hal:journl:peer-00741629 is not listed on IDEAS
    13. Zhou, Guofu, 1993. "Asset-Pricing Tests under Alternative Distributions," Journal of Finance, American Finance Association, vol. 48(5), pages 1927-1942, December.
    14. Berk, Jonathan B., 1997. "Necessary Conditions for the CAPM," Journal of Economic Theory, Elsevier, vol. 73(1), pages 245-257, March.
    15. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    16. David Bauder & Rostyslav Bodnar & Taras Bodnar & Wolfgang Schmid, 2019. "Bayesian estimation of the efficient frontier," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(3), pages 802-830, September.
    17. Li, Quan & Reuveny, Rafael, 2003. "Economic Globalization and Democracy: An Empirical Analysis," British Journal of Political Science, Cambridge University Press, vol. 33(1), pages 29-54, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pankaj Agrrawal, 2023. "The Gibbons, Ross, and Shanken Test for Portfolio Efficiency: A Note Based on Its Trigonometric Properties," Mathematics, MDPI, vol. 11(9), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taras Bodnar & Yarema Okhrin & Valdemar Vitlinskyy & Taras Zabolotskyy, 2018. "Determination and estimation of risk aversion coefficients," Computational Management Science, Springer, vol. 15(2), pages 297-317, June.
    2. Mårten Gulliksson & Stepan Mazur, 2020. "An Iterative Approach to Ill-Conditioned Optimal Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 773-794, December.
    3. Taras Bodnar & Holger Dette & Nestor Parolya & Erik Thors'en, 2019. "Sampling Distributions of Optimal Portfolio Weights and Characteristics in Low and Large Dimensions," Papers 1908.04243, arXiv.org, revised Apr 2023.
    4. Taras Bodnar & Mathias Lindholm & Vilhelm Niklasson & Erik Thors'en, 2020. "Bayesian Quantile-Based Portfolio Selection," Papers 2012.01819, arXiv.org.
    5. Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.
    6. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2010. "Asset-pricing anomalies and spanning: Multivariate and multifactor tests with heavy-tailed distributions," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 763-782, September.
    7. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    8. Haim Levy, 2010. "The CAPM is Alive and Well: A Review and Synthesis," European Financial Management, European Financial Management Association, vol. 16(1), pages 43-71, January.
    9. Bodnar, Taras & Lindholm, Mathias & Niklasson, Vilhelm & Thorsén, Erik, 2022. "Bayesian portfolio selection using VaR and CVaR," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    10. Enrique Sentana, 2009. "The econometrics of mean-variance efficiency tests: a survey," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 65-101, November.
    11. Bodnar Taras & Schmid Wolfgang & Zabolotskyy Tara, 2012. "Minimum VaR and minimum CVaR optimal portfolios: Estimators, confidence regions, and tests," Statistics & Risk Modeling, De Gruyter, vol. 29(4), pages 281-314, November.
    12. Taras Bodnar & Taras Zabolotskyy, 2017. "How risky is the optimal portfolio which maximizes the Sharpe ratio?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 1-28, January.
    13. Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    14. Amengual, Dante & Sentana, Enrique, 2010. "A comparison of mean-variance efficiency tests," Journal of Econometrics, Elsevier, vol. 154(1), pages 16-34, January.
    15. Manuel Galea & David Cademartori & Roberto Curci & Alonso Molina, 2020. "Robust Inference in the Capital Asset Pricing Model Using the Multivariate t -distribution," JRFM, MDPI, vol. 13(6), pages 1-22, June.
    16. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    17. Alexander, Gordon J. & Baptista, Alexandre M., 2009. "Stress testing by financial intermediaries: Implications for portfolio selection and asset pricing," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 65-92, January.
    18. repec:wvu:wpaper:10-08 is not listed on IDEAS
    19. Sermin Gungor & Richard Luger, 2016. "Multivariate Tests of Mean-Variance Efficiency and Spanning With a Large Number of Assets and Time-Varying Covariances," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 161-175, April.
    20. Bodnar, Taras & Parolya, Nestor & Thorsén, Erik, 2023. "Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?," Finance Research Letters, Elsevier, vol. 54(C).
    21. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2013. "On the equivalence of quadratic optimization problems commonly used in portfolio theory," European Journal of Operational Research, Elsevier, vol. 229(3), pages 637-644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:2:p:56-:d:231435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.