IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.16525.html
   My bibliography  Save this paper

Measuring Name Concentrations through Deep Learning

Author

Listed:
  • Eva Lutkebohmert
  • Julian Sester

Abstract

We propose a new deep learning approach for the quantification of name concentration risk in loan portfolios. Our approach is tailored for small portfolios and allows for both an actuarial as well as a mark-to-market definition of loss. The training of our neural network relies on Monte Carlo simulations with importance sampling which we explicitly formulate for the CreditRisk${+}$ and the ratings-based CreditMetrics model. Numerical results based on simulated as well as real data demonstrate the accuracy of our new approach and its superior performance compared to existing analytical methods for assessing name concentration risk in small and concentrated portfolios.

Suggested Citation

  • Eva Lutkebohmert & Julian Sester, 2024. "Measuring Name Concentrations through Deep Learning," Papers 2403.16525, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2403.16525
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.16525
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William Perraudin & Andrew Powell & Peng Yang, 2016. "Multilateral Development Bank Ratings and Preferred Creditor Status," IDB Publications (Working Papers) 94656, Inter-American Development Bank.
    2. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    3. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    4. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    5. Perraudin, William & Powell, Andrew & Yang, Peng, 2016. "Multilateral Development Bank Ratings and Preferred Creditor Status," IDB Publications (Working Papers) 7686, Inter-American Development Bank.
    6. Nikola Tarashev & Haibin Zhu, 2008. "Specification and Calibration Errors in Measures of Portfolio Credit Risk: The Case of the ASRF Model," International Journal of Central Banking, International Journal of Central Banking, vol. 4(2), pages 129-173, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Metzler A., 2020. "State dependent correlations in the Vasicek default model," Dependence Modeling, De Gruyter, vol. 8(1), pages 298-329, January.
    2. Barbagli, Matteo & Vrins, Frédéric, 2023. "Accounting for PD-LGD dependency: A tractable extension to the Basel ASRF framework," Economic Modelling, Elsevier, vol. 125(C).
    3. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
    4. Matteo Accornero & Giuseppe Cascarino & Roberto Felici & Fabio Parlapiano & Alberto Maria Sorrentino, 2018. "Credit risk in banks’ exposures to non‐financial firms," European Financial Management, European Financial Management Association, vol. 24(5), pages 775-791, November.
    5. Metzler A., 2020. "State dependent correlations in the Vasicek default model," Dependence Modeling, De Gruyter, vol. 8(1), pages 298-329, January.
    6. Tarashev, Nikola, 2010. "Measuring portfolio credit risk correctly: Why parameter uncertainty matters," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2065-2076, September.
    7. Marina Brogi & Valentina Lagasio & Luca Riccetti, 2021. "Systemic risk measurement: bucketing global systemically important banks," Annals of Finance, Springer, vol. 17(3), pages 319-351, September.
    8. Simone Varotto, 2008. "An Assessment of the Internal Rating Based Approach in Basel II," ICMA Centre Discussion Papers in Finance icma-dp2008-04, Henley Business School, University of Reading.
    9. Hengxin Cui & Ken Seng Tan & Fan Yang, 2024. "Portfolio credit risk with Archimedean copulas: asymptotic analysis and efficient simulation," Papers 2411.06640, arXiv.org.
    10. Drehmann, Mathias & Tarashev, Nikola, 2013. "Measuring the systemic importance of interconnected banks," Journal of Financial Intermediation, Elsevier, vol. 22(4), pages 586-607.
    11. Kao, Lie-Jane, 2015. "A portfolio-invariant capital allocation scheme penalizing concentration risk," Economic Modelling, Elsevier, vol. 51(C), pages 560-570.
    12. Daniel Rösch & Harald Scheule, 2014. "Forecasting Mortgage Securitization Risk Under Systematic Risk and Parameter Uncertainty," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(3), pages 563-586, September.
    13. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    14. Krebs, Martin & Nippel, Peter, 2021. "Unexpected loss, expected profit, and economic capital: A note on economic capital for credit risk incorporating interest income, expenses, losses, and ROE target," Finance Research Letters, Elsevier, vol. 38(C).
    15. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    16. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    17. Klaus Duellmann & Martin Erdelmeier, 2009. "Crash Testing German Banks," International Journal of Central Banking, International Journal of Central Banking, vol. 5(3), pages 139-175, September.
    18. Xin Huang & Hao Zhou & Haibin Zhu, 2012. "Systemic Risk Contributions," Journal of Financial Services Research, Springer;Western Finance Association, vol. 42(1), pages 55-83, October.
    19. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    20. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.16525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.