IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v8y2020i1p298-329n6.html
   My bibliography  Save this article

State dependent correlations in the Vasicek default model

Author

Listed:
  • Metzler A.

    (Department of Mathematics, Wilfrid Laurier University)

Abstract

This paper incorporates state dependent correlations (those that vary systematically with the state of the economy) into the Vasicek default model. Other approaches to randomizing correlation in the Vasicek model have either assumed that correlation is independent of the systematic risk factor (zero state dependence) or is an explicit function of the systematic risk factor (perfect state dependence). By contrast, our approach allows for an arbitrary degree of state dependence and includes both zero and perfect state dependence as special cases. This is accomplished by expressing the factor loading as a function of an auxiliary (Gaussian) variable that is correlated with the systematic risk factor. Using Federal Reserve data on delinquency rates we use maximum likelihood to estimate the parameters of the model, and find the empirical degree of state dependence to be quite high (but generally not perfect). We also find that randomizing correlation, without allowing for state dependence, does not improve the empirical performance of the Vasicek model.

Suggested Citation

  • Metzler A., 2020. "State dependent correlations in the Vasicek default model," Dependence Modeling, De Gruyter, vol. 8(1), pages 298-329, January.
  • Handle: RePEc:vrs:demode:v:8:y:2020:i:1:p:298-329:n:6
    DOI: 10.1515/demo-2020-0017
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2020-0017
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2020-0017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiri Witzany, 2013. "A Note on the Vasicek’s Model with the Logistic Distribution," Working Papers IES 2013/01, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jan 2013.
    2. Barry Arnold & Robert Beaver & Richard Groeneveld & William Meeker, 1993. "The nontruncated marginal of a truncated bivariate normal distribution," Psychometrika, Springer;The Psychometric Society, vol. 58(3), pages 471-488, September.
    3. Scott, Alexandre & Metzler, Adam, 2015. "A general importance sampling algorithm for estimating portfolio loss probabilities in linear factor models," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 279-293.
    4. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    5. Nikola Tarashev & Haibin Zhu, 2008. "Specification and Calibration Errors in Measures of Portfolio Credit Risk: The Case of the ASRF Model," International Journal of Central Banking, International Journal of Central Banking, vol. 4(2), pages 129-173, June.
    6. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    7. Marek Rutkowski & Silvio Tarca, 2015. "Regulatory Capital Modeling For Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-44.
    8. Kofman, Paul & Koedijk, Kees & Campbell, Rachel, 2002. "Increased Correlation in Bear markets: A Downside Risk Perspective," CEPR Discussion Papers 3172, C.E.P.R. Discussion Papers.
    9. Puccetti Giovanni & Scherer Matthias, 2018. "Copulas, credit portfolios, and the broken heart syndrome," Dependence Modeling, De Gruyter, vol. 6(1), pages 114-130, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Metzler A., 2020. "State dependent correlations in the Vasicek default model," Dependence Modeling, De Gruyter, vol. 8(1), pages 298-329, January.
    2. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    3. Charlot, Philippe & Darné, Olivier & Moussa, Zakaria, 2016. "Commodity returns co-movements: Fundamentals or “style” effect?," Journal of International Money and Finance, Elsevier, vol. 68(C), pages 130-160.
    4. Albuquerque, Rui & Vega, Clara, 2006. "Asymmetric Information in the Stock Market: Economic News and Co-movement," CEPR Discussion Papers 5598, C.E.P.R. Discussion Papers.
    5. Maya Jalloul & Mirela Miescu, 2021. "Equity Market Connectedness across Regimes of Geopolitical Risks," Working Papers 324219805, Lancaster University Management School, Economics Department.
    6. Barbagli, Matteo & Vrins, Frédéric, 2023. "Accounting for PD-LGD dependency: A tractable extension to the Basel ASRF framework," Economic Modelling, Elsevier, vol. 125(C).
    7. Demirer, Riza & Omay, Tolga & Yuksel, Asli & Yuksel, Aydin, 2018. "Global risk aversion and emerging market return comovements," Economics Letters, Elsevier, vol. 173(C), pages 118-121.
    8. Cruz Lopez, Jorge A. & Harris, Jeffrey H. & Hurlin, Christophe & Pérignon, Christophe, 2017. "CoMargin," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(5), pages 2183-2215, October.
      • Jorge A. Cruz Lopez & Jeffrey H. Harris & Christophe Hurlin & Christophe Pérignon, 2015. "CoMargin," Working Papers halshs-00979440, HAL.
      • Jorge Cruz Lopez & Jeffrey Harris & Christophe Hurlin & Christophe Pérignon, 2017. "CoMargin," Post-Print hal-03579309, HAL.
    9. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    10. Omrane Guedhami & April Knill & William L. Megginson & Lemma W. Senbet, 2022. "The dark side of globalization: Evidence from the impact of COVID-19 on multinational companies," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 53(8), pages 1603-1640, October.
    11. Alcock, Jamie & Sinagl, Petra, 2022. "International determinants of asymmetric dependence in investment returns," Journal of International Money and Finance, Elsevier, vol. 122(C).
    12. Tarashev, Nikola, 2010. "Measuring portfolio credit risk correctly: Why parameter uncertainty matters," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2065-2076, September.
    13. Christoffersen, Peter & Langlois, Hugues, 2013. "The Joint Dynamics of Equity Market Factors," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(5), pages 1371-1404, October.
    14. John Knight & Colin Lizieri & Stephen Satchell, 2005. "Diversification when It Hurts? The Joint Distributions of Real Estate and Equity Markets1," Journal of Property Research, Taylor & Francis Journals, vol. 22(4), pages 309-323, December.
    15. Josef Zorn, 2019. "Panic-aware portfolio optimization," Journal of Asset Management, Palgrave Macmillan, vol. 20(2), pages 103-110, March.
    16. Afees A. Salisu & Rangan Gupta & Christian Pierdzioch, 2021. "Predictability of Tail Risks of Canada and the U.S. Over a Century: The Role of Spillovers and Oil Tail Risks," Working Papers 202127, University of Pretoria, Department of Economics.
    17. Simone Varotto, 2008. "An Assessment of the Internal Rating Based Approach in Basel II," ICMA Centre Discussion Papers in Finance icma-dp2008-04, Henley Business School, University of Reading.
    18. Shyamalkumar, Nariankadu D. & Tao, Siyang, 2022. "t-copula from the viewpoint of tail dependence matrices," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    19. Eva Lutkebohmert & Julian Sester, 2024. "Measuring Name Concentrations through Deep Learning," Papers 2403.16525, arXiv.org, revised Nov 2024.
    20. Charlot, Philippe & Marimoutou, Vêlayoudom, 2014. "On the relationship between the prices of oil and the precious metals: Revisiting with a multivariate regime-switching decision tree," Energy Economics, Elsevier, vol. 44(C), pages 456-467.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:8:y:2020:i:1:p:298-329:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.