IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.07236.html
   My bibliography  Save this paper

Partial Identification of Individual-Level Parameters Using Aggregate Data in a Nonparametric Model

Author

Listed:
  • Sarah Moon

Abstract

It is well known that the relationship between variables at the individual level can be different from the relationship between those same variables aggregated over individuals. In this paper, I develop a methodology to partially identify linear combinations of conditional mean outcomes for individual-level outcomes of interest without imposing parametric assumptions when the researcher only has access to aggregate data. I construct identified sets using an optimization program that allows for researchers to impose additional shape and data restrictions. I also provide consistency results and construct an inference procedure that is valid with data that only provides marginal information about each variable. I apply the methodology to simulated and real-world data sets and find that the estimated identified sets are too wide to be useful, but become narrower as more assumptions are imposed and data aggregated at a finer level is available.

Suggested Citation

  • Sarah Moon, 2024. "Partial Identification of Individual-Level Parameters Using Aggregate Data in a Nonparametric Model," Papers 2403.07236, arXiv.org, revised May 2024.
  • Handle: RePEc:arx:papers:2403.07236
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.07236
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stoker, Thomas M, 1984. "Completeness, Distribution Restrictions, and the Form of Aggregate Functions," Econometrica, Econometric Society, vol. 52(4), pages 887-907, July.
    2. Burden, Barry C. & Kimball, David C., 1998. "A New Approach to the Study of Ticket Splitting," American Political Science Review, Cambridge University Press, vol. 92(3), pages 533-544, September.
    3. Rebecca Jack & Clare Halloran & James Okun & Emily Oster, 2023. "Pandemic Schooling Mode and Student Test Scores: Evidence from US School Districts," American Economic Review: Insights, American Economic Association, vol. 5(2), pages 173-190, June.
    4. Yanqin Fan & Robert Sherman & Matthew Shum, 2014. "Identifying Treatment Effects Under Data Combination," Econometrica, Econometric Society, vol. 82(2), pages 811-822, March.
    5. Kate Ho & Adam M. Rosen, 2015. "Partial Identification in Applied Research: Benefits and Challenges," NBER Working Papers 21641, National Bureau of Economic Research, Inc.
    6. Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
    7. Ridder, Geert & Moffitt, Robert, 2007. "The Econometrics of Data Combination," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 75, Elsevier.
    8. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    9. Yan Shen & Cheng Hsiao & Hiroshi Fujiki, 2005. "Aggregate vs. disaggregate data analysis-a paradox in the estimation of a money demand function of Japan under the low interest rate policy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 579-601.
    10. Hsieh, Yu-Wei & Shi, Xiaoxia & Shum, Matthew, 2022. "Inference on estimators defined by mathematical programming," Journal of Econometrics, Elsevier, vol. 226(2), pages 248-268.
    11. Molinari, Francesca & Peski, Marcin, 2006. "Generalization Of A Result On “Regressions, Short And Long”," Econometric Theory, Cambridge University Press, vol. 22(1), pages 159-163, February.
    12. Fan Yanqin & Sherman Robert & Shum Matthew, 2016. "Estimation and Inference in an Ecological Inference Model," Journal of Econometric Methods, De Gruyter, vol. 5(1), pages 17-48, January.
    13. Francesca Molinari, 2020. "Microeconometrics with Partial Identification," Papers 2004.11751, arXiv.org.
    14. Jiang, Wenxin & King, Gary & Schmaltz, Allen & Tanner, Martin A., 2020. "Ecological Regression with Partial Identification," Political Analysis, Cambridge University Press, vol. 28(1), pages 65-86, January.
    15. Philip J. Cross & Charles F. Manski, 2002. "Regressions, Short and Long," Econometrica, Econometric Society, vol. 70(1), pages 357-368, January.
    16. Wendy K. Tam Cho & Brian J. Gaines, 2004. "The Limits of Ecological Inference: The Case of Split‐Ticket Voting," American Journal of Political Science, John Wiley & Sons, vol. 48(1), pages 152-171, January.
    17. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    18. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
    19. Ori Rosen & Wenxin Jiang & Gary King & Martin A. Tanner, 2001. "Bayesian and Frequentist Inference for Ecological Inference: The R×C Case," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 55(2), pages 134-156, July.
    20. Freyberger, Joachim & Horowitz, Joel L., 2015. "Identification and shape restrictions in nonparametric instrumental variables estimation," Journal of Econometrics, Elsevier, vol. 189(1), pages 41-53.
    21. Gary King & Ori Rosen & Martin A. Tanner, 1999. "Binomial-Beta Hierarchical Models for Ecological Inference," Sociological Methods & Research, , vol. 28(1), pages 61-90, August.
    22. Lee, Kevin C & Pesaran, M Hashem & Pierse, Richard G, 1990. "Testing for Aggregation Bias in Linear Models," Economic Journal, Royal Economic Society, vol. 100(400), pages 137-150, Supplemen.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Wenlong Ji & Lihua Lei & Asher Spector, 2023. "Model-Agnostic Covariate-Assisted Inference on Partially Identified Causal Effects," Papers 2310.08115, arXiv.org, revised Nov 2024.
    3. D'Haultfoeuille, Xavier & Gaillac, Christophe & Maurel, Arnaud, 2024. "Linear Regressions with Combined Data," TSE Working Papers 24-1602, Toulouse School of Economics (TSE).
    4. Nathan Kallus, 2022. "What's the Harm? Sharp Bounds on the Fraction Negatively Affected by Treatment," Papers 2205.10327, arXiv.org, revised Nov 2022.
    5. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Firpo, Sergio & Galvao, Antonio F. & Parker, Thomas, 2023. "Uniform inference for value functions," Journal of Econometrics, Elsevier, vol. 235(2), pages 1680-1699.
    7. Lukáš Lafférs, 2019. "Identification in Models with Discrete Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 657-696, February.
    8. Chalak, Karim, 2024. "Nonparametric Gini-Frisch bounds," Journal of Econometrics, Elsevier, vol. 238(1).
    9. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
    10. Sam Asher & Paul Novosad & Charlie Rafkin, 2018. "Partial Identification of Expectations with Interval Data," Papers 1802.10490, arXiv.org.
    11. Choudhury, Sanchari, 2019. "WTO membership and corruption," European Journal of Political Economy, Elsevier, vol. 60(C).
    12. John Mullahy, 2017. "Individual Results May Vary: Elementary Analytics of Inequality-Probability Bounds, with Applications to Health-Outcome Treatment Effects," NBER Working Papers 23603, National Bureau of Economic Research, Inc.
    13. Jorg Stoye, 2020. "A Simple, Short, but Never-Empty Confidence Interval for Partially Identified Parameters," Papers 2010.10484, arXiv.org, revised Dec 2020.
    14. Sung Jae Jun & Sokbae Lee, 2023. "Identifying the Effect of Persuasion," Journal of Political Economy, University of Chicago Press, vol. 131(8), pages 2032-2058.
    15. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    16. D'Haultfoeuille, Xavier & Gaillac, Christophe & Maurel, Arnaud, 2022. "Partially Linear Models under Data Combination," IZA Discussion Papers 15230, Institute of Labor Economics (IZA).
    17. Mullahy, John, 2018. "Individual results may vary: Inequality-probability bounds for some health-outcome treatment effects," Journal of Health Economics, Elsevier, vol. 61(C), pages 151-162.
    18. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
    19. Lee, Ying-Ying & Bhattacharya, Debopam, 2019. "Applied welfare analysis for discrete choice with interval-data on income," Journal of Econometrics, Elsevier, vol. 211(2), pages 361-387.
    20. Yiwei Sun, 2023. "Extrapolating Away from the Cutoff in Regression Discontinuity Designs," Papers 2311.18136, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.07236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.