IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v22y2006i01p159-163_06.html
   My bibliography  Save this article

Generalization Of A Result On “Regressions, Short And Long”

Author

Listed:
  • Molinari, Francesca
  • Peski, Marcin

Abstract

This paper is concerned with the problem of combining a data set that identifies the conditional distribution P(y|x) with one that identifies the conditional distribution P(z|x) to identify the regressions E(y|x,·) ≡ [E(y|x,z = j),j ∈ Z] when the conditional distribution P(y|x,z) is unknown. Cross and Manski (2002, Econometrica 70, 357–368) studied this problem and showed that the identification region of E(y|x,·) can be precisely calculated when y has finite support. Here we generalize the result of Cross and Manski, showing that the identification region can be precisely calculated also in the case in which y has infinite support.We are grateful to the co-editor Paolo Paruolo, an anonymous referee, Maria Goltsman, Nick Kiefer, Tymon Tatur, and Tim Vogelsang for useful comments. Any remaining errors are our own responsibility.Financial support from Northwestern University's Dissertation Year Fellowship is gratefully acknowledged.

Suggested Citation

  • Molinari, Francesca & Peski, Marcin, 2006. "Generalization Of A Result On “Regressions, Short And Long”," Econometric Theory, Cambridge University Press, vol. 22(1), pages 159-163, February.
  • Handle: RePEc:cup:etheor:v:22:y:2006:i:01:p:159-163_06
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466606060063/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Philip J. Cross & Charles F. Manski, 2002. "Regressions, Short and Long," Econometrica, Econometric Society, vol. 70(1), pages 357-368, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xavier D'Haultfoeuille & Christophe Gaillac & Arnaud Maurel, 2018. "Rationalizing Rational Expectations? Tests and Deviations," NBER Working Papers 25274, National Bureau of Economic Research, Inc.
    2. Xavier D'Haultfoeuille & Christophe Gaillac & Arnaud Maurel, 2021. "Rationalizing rational expectations: Characterizations and tests," Quantitative Economics, Econometric Society, vol. 12(3), pages 817-842, July.
    3. Matthew Masten & Alexandre Poirier, 2016. "Partial independence in nonseparable models," CeMMAP working papers CWP26/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Francesca Molinari, 2020. "Microeconometrics with Partial Identification," Papers 2004.11751, arXiv.org.
    5. Matthew A. Masten & Alexandre Poirier, 2018. "Identification of Treatment Effects Under Conditional Partial Independence," Econometrica, Econometric Society, vol. 86(1), pages 317-351, January.
    6. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. D'Haultfoeuille, Xavier & Gaillac, Christophe & Maurel, Arnaud, 2024. "Linear Regressions with Combined Data," TSE Working Papers 24-1602, Toulouse School of Economics (TSE).
    8. Sarah Moon, 2024. "Partial Identification of Individual-Level Parameters Using Aggregate Data in a Nonparametric Model," Papers 2403.07236, arXiv.org, revised May 2024.
    9. David Pacini, 2012. "Least Square Linear Prediction with Two-Sample Data," Bristol Economics Discussion Papers 12/631, School of Economics, University of Bristol, UK.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Thomas F. Crossley & Peter Levell & Stavros Poupakis, 2022. "Regression with an imputed dependent variable," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1277-1294, November.
    3. Fan, Yanqin & Shi, Xuetao & Tao, Jing, 2023. "Partial identification and inference in moment models with incomplete data," Journal of Econometrics, Elsevier, vol. 235(2), pages 418-443.
    4. Dang, Hai-Anh & Lanjouw, Peter & Luoto, Jill & McKenzie, David, 2014. "Using repeated cross-sections to explore movements into and out of poverty," Journal of Development Economics, Elsevier, vol. 107(C), pages 112-128.
    5. Galichon, Alfred & Henry, Marc, 2009. "A test of non-identifying restrictions and confidence regions for partially identified parameters," Journal of Econometrics, Elsevier, vol. 152(2), pages 186-196, October.
    6. Tatiana Komarova & Denis Nekipelov & Evgeny Yakovlev, 2018. "Identification, data combination, and the risk of disclosure," Quantitative Economics, Econometric Society, vol. 9(1), pages 395-440, March.
    7. Matthew A. Masten & Alexandre Poirier, 2018. "Identification of Treatment Effects Under Conditional Partial Independence," Econometrica, Econometric Society, vol. 86(1), pages 317-351, January.
    8. Sung Jae Jun & Sokbae Lee, 2023. "Identifying the Effect of Persuasion," Journal of Political Economy, University of Chicago Press, vol. 131(8), pages 2032-2058.
    9. Matthew Masten & Alexandre Poirier, 2016. "Partial independence in nonseparable models," CeMMAP working papers CWP26/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. D'Haultfoeuille, Xavier & Gaillac, Christophe & Maurel, Arnaud, 2024. "Linear Regressions with Combined Data," TSE Working Papers 24-1602, Toulouse School of Economics (TSE).
    11. Yanqin Fan & Carlos A. Manzanares, 2017. "Partial identification of average treatment effects on the treated through difference-in-differences," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 1057-1080, October.
    12. Mullin, Charles H., 2006. "Identification and estimation with contaminated data: When do covariate data sharpen inference?," Journal of Econometrics, Elsevier, vol. 130(2), pages 253-272, February.
    13. Cheti Nicoletti, 2010. "Poverty analysis with missing data: alternative estimators compared," Empirical Economics, Springer, vol. 38(1), pages 1-22, February.
    14. Peter Sandholt Jensen & Allan H. Würtz, 2006. "On determining the importance of a regressor with small and undersized samples," Economics Working Papers 2006-08, Department of Economics and Business Economics, Aarhus University.
    15. Borowczyk-Martins, Daniel & Pacini, David, 2024. "Measuring labor market transitions with time series of cross sections," Economics Letters, Elsevier, vol. 237(C).
    16. Charles F. Manski, 2003. "Identification Problems in the Social Sciences and Everyday Life," Southern Economic Journal, John Wiley & Sons, vol. 70(1), pages 11-21, July.
    17. Sarah Moon, 2024. "Partial Identification of Individual-Level Parameters Using Aggregate Data in a Nonparametric Model," Papers 2403.07236, arXiv.org, revised May 2024.
    18. Nathan Kallus, 2022. "What's the Harm? Sharp Bounds on the Fraction Negatively Affected by Treatment," Papers 2205.10327, arXiv.org, revised Nov 2022.
    19. Xavier D'Haultfoeuille & Christophe Gaillac & Arnaud Maurel, 2021. "Rationalizing rational expectations: Characterizations and tests," Quantitative Economics, Econometric Society, vol. 12(3), pages 817-842, July.
    20. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:22:y:2006:i:01:p:159-163_06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.