IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.17642.html
   My bibliography  Save this paper

The critical disordered pinning measure

Author

Listed:
  • Ran Wei
  • Jinjiong Yu

Abstract

In this paper, we study a disordered pinning model induced by a random walk whose increments have a finite fourth moment and vanishing first and third moments. It is known that this model is marginally relevant, and moreover, it undergoes a phase transition in an intermediate disorder regime. We show that, in the critical window, the point-to-point partition functions converge to a unique limiting random measure, which we call the critical disordered pinning measure. We also obtain an analogous result for a continuous counterpart to the pinning model, which is closely related to two other models: one is a critical stochastic Volterra equation that gives rise to a rough volatility model, and the other is a critical stochastic heat equation with multiplicative noise that is white in time and delta in space.

Suggested Citation

  • Ran Wei & Jinjiong Yu, 2024. "The critical disordered pinning measure," Papers 2402.17642, arXiv.org, revised Mar 2024.
  • Handle: RePEc:arx:papers:2402.17642
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.17642
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eyal Neuman & Mathieu Rosenbaum, 2017. "Fractional Brownian motion with zero Hurst parameter: a rough volatility viewpoint," Papers 1711.00427, arXiv.org, revised May 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
    2. Giacomo Giorgio & Barbara Pacchiarotti & Paolo Pigato, 2023. "Short-Time Asymptotics for Non-Self-Similar Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 30(3), pages 123-152, May.
    3. Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Sojmark, 2017. "Functional central limit theorems for rough volatility," Papers 1711.03078, arXiv.org, revised Nov 2023.
    4. Wu, Peng & Muzy, Jean-François & Bacry, Emmanuel, 2022. "From rough to multifractal volatility: The log S-fBM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    5. Tetsuya Takaishi, 2019. "Rough volatility of Bitcoin," Papers 1904.12346, arXiv.org.
    6. Christian Bayer & Paul Hager & Sebastian Riedel & John Schoenmakers, 2021. "Optimal stopping with signatures," Papers 2105.00778, arXiv.org.
    7. Paolo Pigato, 2019. "Extreme at-the-money skew in a local volatility model," Finance and Stochastics, Springer, vol. 23(4), pages 827-859, October.
    8. Horvath, Blanka & Jacquier, Antoine & Muguruza, Aitor & Søjmark, Andreas, 2024. "Functional central limit theorems for rough volatility," LSE Research Online Documents on Economics 122848, London School of Economics and Political Science, LSE Library.
    9. Paul Hager & Eyal Neuman, 2020. "The Multiplicative Chaos of $H=0$ Fractional Brownian Fields," Papers 2008.01385, arXiv.org.
    10. Christian Bayer & Fabian Andsem Harang & Paolo Pigato, 2020. "Log-modulated rough stochastic volatility models," Papers 2008.03204, arXiv.org, revised May 2021.
    11. Takaishi, Tetsuya, 2020. "Rough volatility of Bitcoin," Finance Research Letters, Elsevier, vol. 32(C).
    12. Forde, Martin & Fukasawa, Masaaki & Gerhold, Stefan & Smith, Benjamin, 2022. "The Riemann–Liouville field and its GMC as H→0, and skew flattening for the rough Bergomi model," Statistics & Probability Letters, Elsevier, vol. 181(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.17642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.