IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.14390.html
   My bibliography  Save this paper

Higher order approximation of option prices in Barndorff-Nielsen and Shephard models

Author

Listed:
  • 'Alvaro Guinea Juli'a
  • Alet Roux

Abstract

We present an approximation method based on the mixing formula (Hull & White 1987, Romano & Touzi 1997) for pricing European options in Barndorff-Nielsen and Shephard models. This approximation is based on a Taylor expansion of the option price. It is implemented using a recursive algorithm that allows us to obtain closed form approximations of the option price of any order (subject to technical conditions on the background driving L\'evy process). This method can be used for any type of Barndorff-Nielsen and Shephard stochastic volatility model. Explicit results are presented in the case where the stationary distribution of the background driving L\'evy process is inverse Gaussian or gamma. In both of these cases, the approximation compares favorably to option prices produced by the characteristic function. In particular, we also perform an error analysis of the approximation, which is partially based on the results of Das & Langren\'e (2022). We obtain asymptotic results for the error of the $N^{\text{th}}$ order approximation and error bounds when the variance process satisfies an inverse Gaussian Ornstein-Uhlenbeck process or a gamma Ornstein-Uhlenbeck process.

Suggested Citation

  • 'Alvaro Guinea Juli'a & Alet Roux, 2024. "Higher order approximation of option prices in Barndorff-Nielsen and Shephard models," Papers 2401.14390, arXiv.org, revised Apr 2024.
  • Handle: RePEc:arx:papers:2401.14390
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.14390
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Takuji Arai, 2022. "Approximate Option Pricing Formula For Barndorff-Nielsen And Shephard Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 25(02), pages 1-26, March.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. Friedrich Hubalek & Petra Posedel, 2011. "Joint analysis and estimation of stock prices and trading volume in Barndorff-Nielsen and Shephard stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 917-932.
    4. Barone-Adesi, Giovanni & Rasmussen, Henrik & Ravanelli, Claudia, 2005. "An option pricing formula for the GARCH diffusion model," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 287-310, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    2. Damien Ackerer & Damir Filipović, 2020. "Option pricing with orthogonal polynomial expansions," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 47-84, January.
    3. José Fajardo, 2014. "Symmetry and Bates’ rule in Ornstein–Uhlenbeck stochastic volatility models," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 319-327, October.
    4. Huang, Hung-Hsi & Lin, Shin-Hung & Wang, Chiu-Ping, 2019. "Reasonable evaluation of VIX options for the Taiwan stock index," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 111-130.
    5. Fig-Talamanca, Gianna, 2009. "Testing volatility autocorrelation in the constant elasticity of variance stochastic volatility model," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2201-2218, April.
    6. Nicolas Langren'e & Geoffrey Lee & Zili Zhu, 2015. "Switching to non-affine stochastic volatility: A closed-form expansion for the Inverse Gamma model," Papers 1507.02847, arXiv.org, revised Mar 2016.
    7. Yun, Youngyun, 2018. "The moments of a diffusion process," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 36-41.
    8. Damien Ackerer & Damir Filipovic, 2017. "Option Pricing with Orthogonal Polynomial Expansions," Papers 1711.09193, arXiv.org, revised May 2019.
    9. Peter Carr & Sander Willems, 2019. "A lognormal type stochastic volatility model with quadratic drift," Papers 1908.07417, arXiv.org.
    10. Wu, Xin-Yu & Ma, Chao-Qun & Wang, Shou-Yang, 2012. "Warrant pricing under GARCH diffusion model," Economic Modelling, Elsevier, vol. 29(6), pages 2237-2244.
    11. Chaoqun Ma & Shengjie Yue & Hui Wu & Yong Ma, 2020. "Pricing Vulnerable Options with Stochastic Volatility and Stochastic Interest Rate," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 391-429, August.
    12. Yinhao Wu & Ping He, 2024. "The continuous-time limit of quasi score-driven volatility models," Papers 2409.14734, arXiv.org.
    13. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    14. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    15. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    16. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    17. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    18. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    19. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    20. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.14390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.