IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2312.12741.html
   My bibliography  Save this paper

Locally Optimal Fixed-Budget Best Arm Identification in Two-Armed Gaussian Bandits with Unknown Variances

Author

Listed:
  • Masahiro Kato

Abstract

We address the problem of best arm identification (BAI) with a fixed budget for two-armed Gaussian bandits. In BAI, given multiple arms, we aim to find the best arm, an arm with the highest expected reward, through an adaptive experiment. Kaufmann et al. (2016) develops a lower bound for the probability of misidentifying the best arm. They also propose a strategy, assuming that the variances of rewards are known, and show that it is asymptotically optimal in the sense that its probability of misidentification matches the lower bound as the budget approaches infinity. However, an asymptotically optimal strategy is unknown when the variances are unknown. For this open issue, we propose a strategy that estimates variances during an adaptive experiment and draws arms with a ratio of the estimated standard deviations. We refer to this strategy as the Neyman Allocation (NA)-Augmented Inverse Probability weighting (AIPW) strategy. We then demonstrate that this strategy is asymptotically optimal by showing that its probability of misidentification matches the lower bound when the budget approaches infinity, and the gap between the expected rewards of two arms approaches zero (small-gap regime). Our results suggest that under the worst-case scenario characterized by the small-gap regime, our strategy, which employs estimated variance, is asymptotically optimal even when the variances are unknown.

Suggested Citation

  • Masahiro Kato, 2023. "Locally Optimal Fixed-Budget Best Arm Identification in Two-Armed Gaussian Bandits with Unknown Variances," Papers 2312.12741, arXiv.org, revised Mar 2024.
  • Handle: RePEc:arx:papers:2312.12741
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2312.12741
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinyong Hahn & Keisuke Hirano & Dean Karlan, 2011. "Adaptive Experimental Design Using the Propensity Score," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 96-108, January.
    2. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    3. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    4. Karun Adusumilli, 2022. "Neyman allocation is minimax optimal for best arm identification with two arms," Papers 2204.05527, arXiv.org, revised Aug 2022.
    5. Maximilian Kasy & Anja Sautmann, 2021. "Adaptive Treatment Assignment in Experiments for Policy Choice," Econometrica, Econometric Society, vol. 89(1), pages 113-132, January.
    6. Jinglong Zhao, 2023. "Adaptive Neyman Allocation," Papers 2309.08808, arXiv.org, revised Sep 2023.
    7. Masahiro Kato, 2023. "Worst-Case Optimal Multi-Armed Gaussian Best Arm Identification with a Fixed Budget," Papers 2310.19788, arXiv.org, revised Mar 2024.
    8. Xuming He & Qi-man Shao, 1996. "Bahadur efficiency and robustness of studentized score tests," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(2), pages 295-314, June.
    9. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    10. Kaito Ariu & Masahiro Kato & Junpei Komiyama & Kenichiro McAlinn & Chao Qin, 2021. "Policy Choice and Best Arm Identification: Asymptotic Analysis of Exploration Sampling," Papers 2109.08229, arXiv.org, revised Nov 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.
    2. Masahiro Kato, 2024. "Generalized Neyman Allocation for Locally Minimax Optimal Best-Arm Identification," Papers 2405.19317, arXiv.org, revised Dec 2024.
    3. Masahiro Kato, 2021. "Adaptive Doubly Robust Estimator from Non-stationary Logging Policy under a Convergence of Average Probability," Papers 2102.08975, arXiv.org, revised Mar 2021.
    4. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2022. "Best Arm Identification with Contextual Information under a Small Gap," Papers 2209.07330, arXiv.org, revised Jan 2023.
    5. Harrison H. Li & Art B. Owen, 2023. "Double machine learning and design in batch adaptive experiments," Papers 2309.15297, arXiv.org.
    6. Chao Qin & Daniel Russo, 2024. "Optimizing Adaptive Experiments: A Unified Approach to Regret Minimization and Best-Arm Identification," Papers 2402.10592, arXiv.org, revised Jul 2024.
    7. Max Cytrynbaum, 2021. "Optimal Stratification of Survey Experiments," Papers 2111.08157, arXiv.org, revised Aug 2023.
    8. Masahiro Kato & Takuya Ishihara & Junya Honda & Yusuke Narita, 2020. "Efficient Adaptive Experimental Design for Average Treatment Effect Estimation," Papers 2002.05308, arXiv.org, revised Oct 2021.
    9. Masahiro Kato, 2023. "Worst-Case Optimal Multi-Armed Gaussian Best Arm Identification with a Fixed Budget," Papers 2310.19788, arXiv.org, revised Mar 2024.
    10. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    11. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., 2022. "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    12. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    13. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    14. Masahiro Kato & Kenshi Abe & Kaito Ariu & Shota Yasui, 2020. "A Practical Guide of Off-Policy Evaluation for Bandit Problems," Papers 2010.12470, arXiv.org.
    15. Fan Li & Ashley L. Buchanan & Stephen R. Cole, 2022. "Generalizing trial evidence to target populations in non‐nested designs: Applications to AIDS clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 669-697, June.
    16. Jian, L. & Linton, O. B. & Tang, H. & Zhang, Y., 2023. "Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance," Janeway Institute Working Papers 2315, Faculty of Economics, University of Cambridge.
    17. Firpo, Sergio Pinheiro & Pinto, Rafael de Carvalho Cayres, 2012. "Combining Strategies for the Estimation of Treatment Effects," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 32(1), March.
    18. Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023. "Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations," Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
    19. Fei Wang & Yuhao Deng, 2023. "Non-Asymptotic Bounds of AIPW Estimators for Means with Missingness at Random," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    20. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2312.12741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.