IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2312.02081.html
   My bibliography  Save this paper

Copula-based deviation measure of cointegrated financial assets

Author

Listed:
  • Alexander Shulzhenko

Abstract

This study outlines a comprehensive methodology utilizing copulas to discern inconsistencies in the behavior exhibited by pairs of financial assets. It introduces a robust approach to establishing the interrelationship between the returns of these assets, exploring potential measures of dependence among the stochastic variables represented by these returns. Special emphasis is placed on scrutinizing the traditional measure of dependence, namely the correlation coefficient, delineating its limitations. Furthermore, the study articulates an alternative methodology that offers enhanced stability and informativeness in appraising the relationship between financial instrument returns.

Suggested Citation

  • Alexander Shulzhenko, 2023. "Copula-based deviation measure of cointegrated financial assets," Papers 2312.02081, arXiv.org.
  • Handle: RePEc:arx:papers:2312.02081
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2312.02081
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibragimov, Rustam & Prokhorov, Artem, 2016. "Heavy tails and copulas: Limits of diversification revisited," Economics Letters, Elsevier, vol. 149(C), pages 102-107.
    2. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    3. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    2. Bo Liu & Lo-Bin Chang & Hélyette Geman, 2017. "Intraday pairs trading strategies on high frequency data: the case of oil companies," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 87-100, January.
    3. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    4. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    5. Stübinger, Johannes & Walter, Dominik & Knoll, Julian, 2017. "Financial market predictions with Factorization Machines: Trading the opening hour based on overnight social media data," FAU Discussion Papers in Economics 19/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Krauss, Christopher & Herrmann, Klaus & Teis, Stefan, 2015. "On the power and size properties of cointegration tests in the light of high-frequency stylized facts," FAU Discussion Papers in Economics 11/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    7. Johannes Stübinger & Lucas Schneider, 2019. "Statistical Arbitrage with Mean-Reverting Overnight Price Gaps on High-Frequency Data of the S&P 500," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    8. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    9. Stübinger, Johannes, 2018. "Statistical arbitrage with optimal causal paths on high-frequencydata of the S&P 500," FAU Discussion Papers in Economics 01/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    10. Yoontae Hwang & Stefan Zohren & Yongjae Lee, 2024. "Temporal Representation Learning for Stock Similarities and Its Applications in Investment Management," Papers 2407.13751, arXiv.org.
    11. Johannes Stübinger & Sylvia Endres, 2018. "Pairs trading with a mean-reverting jump–diffusion model on high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1735-1751, October.
    12. Sabino da Silva, Fernando A.B. & Ziegelmann, Flavio A. & Caldeira, João F., 2023. "A pairs trading strategy based on mixed copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 16-34.
    13. Endres, Sylvia & Stübinger, Johannes, 2017. "Optimal trading strategies for Lévy-driven Ornstein-Uhlenbeck processes," FAU Discussion Papers in Economics 17/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    14. Krauss, Christopher & Stübinger, Johannes, 2015. "Nonlinear dependence modeling with bivariate copulas: Statistical arbitrage pairs trading on the S&P 100," FAU Discussion Papers in Economics 15/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    15. Christopher Krauss & Klaus Herrmann, 2017. "On the Power and Size Properties of Cointegration Tests in the Light of High-Frequency Stylized Facts," JRFM, MDPI, vol. 10(1), pages 1-24, February.
    16. Johannes St binger & Jens Bredthauer, 2017. "Statistical Arbitrage Pairs Trading with High-frequency Data," International Journal of Economics and Financial Issues, Econjournals, vol. 7(4), pages 650-662.
    17. Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.
    18. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    19. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    20. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2312.02081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.