IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.16260.html
   My bibliography  Save this paper

Using Multiple Outcomes to Improve the Synthetic Control Method

Author

Listed:
  • Liyang Sun
  • Eli Ben-Michael
  • Avi Feller

Abstract

When there are multiple outcome series of interest, Synthetic Control analyses typically proceed by estimating separate weights for each outcome. In this paper, we instead propose estimating a common set of weights across outcomes, by balancing either a vector of all outcomes or an index or average of them. Under a low-rank factor model, we show that these approaches lead to lower bias bounds than separate weights, and that averaging leads to further gains when the number of outcomes grows. We illustrate this via a re-analysis of the impact of the Flint water crisis on educational outcomes.

Suggested Citation

  • Liyang Sun & Eli Ben-Michael & Avi Feller, 2023. "Using Multiple Outcomes to Improve the Synthetic Control Method," Papers 2311.16260, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2311.16260
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.16260
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Esther Duflo & Pascaline Dupas & Michael Kremer, 2011. "Peer Effects, Teacher Incentives, and the Impact of Tracking: Evidence from a Randomized Evaluation in Kenya," American Economic Review, American Economic Association, vol. 101(5), pages 1739-1774, August.
    2. Joseph Fry, 2023. "A Method of Moments Approach to Asymptotically Unbiased Synthetic Controls," Papers 2312.01209, arXiv.org, revised Mar 2024.
    3. Paolo Pinotti, 2015. "The Economic Costs of Organised Crime: Evidence from Southern Italy," Economic Journal, Royal Economic Society, vol. 125(586), pages 203-232, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leo Delaric Manansala & Alice Tibayan Valerio, 2024. "Impact of violent and property crimes on microfirms’ performance: The Philippine experience," HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ECONOMICS AND BUSINESS ADMINISTRATION, HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE, HO CHI MINH CITY OPEN UNIVERSITY, vol. 14(3), pages 3-17.
    2. Ben Kelcey & Zuchao Shen & Jessaca Spybrook, 2016. "Intraclass Correlation Coefficients for Designing Cluster-Randomized Trials in Sub-Saharan Africa Education," Evaluation Review, , vol. 40(6), pages 500-525, December.
    3. Giacomo De Giorgi & Michele Pellizzari & William Gui Woolston, 2012. "Class Size And Class Heterogeneity," Journal of the European Economic Association, European Economic Association, vol. 10(4), pages 795-830, August.
    4. Teresa Molina Millán & Karen Macours, 2017. "Attrition in randomized control trials: Using tracking information to correct bias," FEUNL Working Paper Series novaf:wp1702, Universidade Nova de Lisboa, Faculdade de Economia.
    5. Bonesrønning, Hans & Finseraas, Henning & Hardoy, Ines & Iversen, Jon Marius Vaag & Nyhus, Ole Henning & Opheim, Vibeke & Salvanes, Kari Vea & Sandsør, Astrid Marie Jorde & Schøne, Pål, 2022. "Small-group instruction to improve student performance in mathematics in early grades: Results from a randomized field experiment," Journal of Public Economics, Elsevier, vol. 216(C).
    6. Adam S. Booij & Edwin Leuven & Hessel Oosterbeek, 2017. "Ability Peer Effects in University: Evidence from a Randomized Experiment," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(2), pages 547-578.
    7. Galletta, Sergio, 2017. "Law enforcement, municipal budgets and spillover effects: Evidence from a quasi-experiment in Italy," Journal of Urban Economics, Elsevier, vol. 101(C), pages 90-105.
    8. Belot, Michèle & James, Jonathan, 2014. "A new perspective on the issue of selection bias in randomized controlled field experiments," Economics Letters, Elsevier, vol. 124(3), pages 326-328.
    9. Francesca Maria Calamunci & Federico Fabio Frattini, 2023. "When Crime Tears Communities Apart: Social Capital and Organised Crime," Working Papers 2023.08, Fondazione Eni Enrico Mattei.
    10. Amrei Lahno & Marta Serra-Garcia, 2015. "Peer effects in risk taking: Envy or conformity?," Journal of Risk and Uncertainty, Springer, vol. 50(1), pages 73-95, February.
    11. Holla,Alaka & Bendini,Maria Magdalena & Dinarte Diaz,Lelys Ileana & Trako,Iva, 2021. "Is Investment in Preprimary Education Too Low ? Lessons from (Quasi) ExperimentalEvidence across Countries," Policy Research Working Paper Series 9723, The World Bank.
    12. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    13. Luc Behaghel & Clément de Chaisemartin & Marc Gurgand, 2017. "Ready for Boarding? The Effects of a Boarding School for Disadvantaged Students," American Economic Journal: Applied Economics, American Economic Association, vol. 9(1), pages 140-164, January.
    14. Olivier De Groote & Koen Declercq, 2021. "Tracking and specialization of high schools: Heterogeneous effects of school choice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 898-916, November.
    15. Pierfrancesco Rolla & Patricia Justino, 2022. "The social consequences of organized crime in Italy," WIDER Working Paper Series wp-2022-106, World Institute for Development Economic Research (UNU-WIDER).
    16. van Elk, Roel & van der Steeg, Marc & Webbink, Dinand, 2011. "Does the timing of tracking affect higher education completion?," Economics of Education Review, Elsevier, vol. 30(5), pages 1009-1021, October.
    17. Ariel BenYishay & A. Mushfiq Mobarak, 2014. "Social Learning and Communication," NBER Working Papers 20139, National Bureau of Economic Research, Inc.
    18. Tomas Williams & Pablo Slutzky & Mauricio Villamizar-Villegas, 2019. "Drug Money and Bank Lending: The Unintended Consequences of Anti-Money Laundering Policies," Working Papers 2019-5, The George Washington University, Institute for International Economic Policy, revised May 2020.
    19. Sönke Hendrik Matthewes, 2020. "Better together? Heterogeneous effects of tracking on student achievement," CEP Discussion Papers dp1706.pdf, Centre for Economic Performance, LSE.
    20. Tim Klausmann, 2021. "Feedback in Homogeneous Ability Groups: A Field Experiment," Working Papers 2114, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.16260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.