IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.00747.html
   My bibliography  Save this paper

NoxTrader: LSTM-Based Stock Return Momentum Prediction for Quantitative Trading

Author

Listed:
  • Hsiang-Hui Liu
  • Han-Jay Shu
  • Wei-Ning Chiu

Abstract

We introduce NoxTrader, a sophisticated system designed for portfolio construction and trading execution with the primary objective of achieving profitable outcomes in the stock market, specifically aiming to generate moderate to long-term profits. The underlying learning process of NoxTrader is rooted in the assimilation of valuable insights derived from historical trading data, particularly focusing on time-series analysis due to the nature of the dataset employed. In our approach, we utilize price and volume data of US stock market for feature engineering to generate effective features, including Return Momentum, Week Price Momentum, and Month Price Momentum. We choose the Long Short-Term Memory (LSTM)model to capture continuous price trends and implement dynamic model updates during the trading execution process, enabling the model to continuously adapt to the current market trends. Notably, we have developed a comprehensive trading backtesting system - NoxTrader, which allows us to manage portfolios based on predictive scores and utilize custom evaluation metrics to conduct a thorough assessment of our trading performance. Our rigorous feature engineering and careful selection of prediction targets enable us to generate prediction data with an impressive correlation range between 0.65 and 0.75. Finally, we monitor the dispersion of our prediction data and perform a comparative analysis against actual market data. Through the use of filtering techniques, we improved the initial -60% investment return to 325%.

Suggested Citation

  • Hsiang-Hui Liu & Han-Jay Shu & Wei-Ning Chiu, 2023. "NoxTrader: LSTM-Based Stock Return Momentum Prediction for Quantitative Trading," Papers 2310.00747, arXiv.org, revised Oct 2023.
  • Handle: RePEc:arx:papers:2310.00747
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.00747
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clifford S. Asness & Tobias J. Moskowitz & Lasse Heje Pedersen, 2013. "Value and Momentum Everywhere," Journal of Finance, American Finance Association, vol. 68(3), pages 929-985, June.
    2. Soumyadip Sarkar, 2023. "Quantitative Trading using Deep Q Learning," Papers 2304.06037, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Grobys & James W. Kolari & Jere Rutanen, 2022. "Factor momentum, option-implied volatility scaling, and investor sentiment," Journal of Asset Management, Palgrave Macmillan, vol. 23(2), pages 138-155, March.
    2. Onishchenko, Olena & Zhao, Jing & Kongahawatte, Sampath & Kuruppuarachchi, Duminda, 2024. "Investor heterogeneity and anchoring-induced momentum," Journal of Behavioral and Experimental Finance, Elsevier, vol. 42(C).
    3. Eero Pätäri & Timo Leivo, 2017. "A Closer Look At Value Premium: Literature Review And Synthesis," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 79-168, February.
    4. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    5. Kwon, Oh Kang & Satchell, Stephen, 2018. "The distribution of cross sectional momentum returns," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 225-241.
    6. Yuming Li, 2017. "Risks and rewards for momentum and reversal portfolios," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 289-315, August.
    7. Kobana Abukari & Isaac Otchere, 2020. "Dominance of hybrid contratum strategies over momentum and contrarian strategies: half a century of evidence," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(4), pages 471-505, December.
    8. J. Daniel Aromí, 2018. "GDP growth forecasts and information flows: Is there evidence of overreactions?," International Finance, Wiley Blackwell, vol. 21(2), pages 122-139, June.
    9. Chen, Zhuo & Lu, Andrea, 2017. "Slow diffusion of information and price momentum in stocks: Evidence from options markets," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 98-108.
    10. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    11. Raymond H. Chan & Ephraim Clark & Xu Guo & Wing-Keung Wong, 2020. "New development on the third-order stochastic dominance for risk-averse and risk-seeking investors with application in risk management," Risk Management, Palgrave Macmillan, vol. 22(2), pages 108-132, June.
    12. Xingyue Pu & Stephen Roberts & Xiaowen Dong & Stefan Zohren, 2023. "Network Momentum across Asset Classes," Papers 2308.11294, arXiv.org.
    13. Nicholas Apergis & Vasilios Plakandaras & Ioannis Pragidis, 2022. "Industry momentum and reversals in stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3093-3138, July.
    14. Carmine De Franco & Johann Nicolle & Huyên Pham, 2019. "Dealing with Drift Uncertainty: A Bayesian Learning Approach," Risks, MDPI, vol. 7(1), pages 1-18, January.
    15. Cakici, Nusret & Tang, Yi & Yan, An, 2016. "Do the size, value, and momentum factors drive stock returns in emerging markets?," Journal of International Money and Finance, Elsevier, vol. 69(C), pages 179-204.
    16. Maximilian Klöckner & Christoph G. Schmidt & Stephan M. Wagner, 2022. "When Blockchain Creates Shareholder Value: Empirical Evidence from International Firm Announcements," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 46-64, January.
    17. Dimitri Vayanos & Paul Woolley, 2023. "Asset Management as Creator of Market Inefficiency," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 51(1), pages 1-11, March.
    18. Yeguang Chi & Wenyan Hao & Jiangdong Hu & Zhenkai Ran, 2023. "An empirical investigation on risk factors in cryptocurrency futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(8), pages 1161-1180, August.
    19. JULES H. van BINSBERGEN & CHRISTIAN C. OPP, 2019. "Real Anomalies," Journal of Finance, American Finance Association, vol. 74(4), pages 1659-1706, August.
    20. Liu, Laura Xiaolei & Zhang, Lu, 2014. "A neoclassical interpretation of momentum," Journal of Monetary Economics, Elsevier, vol. 67(C), pages 109-128.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.00747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.