IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2309.10448.html
   My bibliography  Save this paper

Human-AI Interactions and Societal Pitfalls

Author

Listed:
  • Francisco Castro
  • Jian Gao
  • S'ebastien Martin

Abstract

When working with generative artificial intelligence (AI), users may see productivity gains, but the AI-generated content may not match their preferences exactly. To study this effect, we introduce a Bayesian framework in which heterogeneous users choose how much information to share with the AI, facing a trade-off between output fidelity and communication cost. We show that the interplay between these individual-level decisions and AI training may lead to societal challenges. Outputs may become more homogenized, especially when the AI is trained on AI-generated content. And any AI bias may become societal bias. A solution to the homogenization and bias issues is to improve human-AI interactions, enabling personalized outputs without sacrificing productivity.

Suggested Citation

  • Francisco Castro & Jian Gao & S'ebastien Martin, 2023. "Human-AI Interactions and Societal Pitfalls," Papers 2309.10448, arXiv.org, revised Oct 2023.
  • Handle: RePEc:arx:papers:2309.10448
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2309.10448
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    2. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2018. "Prediction, Judgment, and Complexity: A Theory of Decision-Making and Artificial Intelligence," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 89-110, National Bureau of Economic Research, Inc.
    3. David Rozado, 2023. "The Political Biases of ChatGPT," Social Sciences, MDPI, vol. 12(3), pages 1-8, March.
    4. Tyna Eloundou & Sam Manning & Pamela Mishkin & Daniel Rock, 2023. "GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models," Papers 2303.10130, arXiv.org, revised Aug 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamer Boyaci, & Caner Canyakmaz, & Francis de Véricourt,, 2020. "Human and machine: The impact of machine input on decision-making under cognitive limitations," ESMT Research Working Papers ESMT-20-02, ESMT European School of Management and Technology.
    2. Persson, Petra, 2018. "Attention manipulation and information overload," Behavioural Public Policy, Cambridge University Press, vol. 2(1), pages 78-106, May.
    3. Kurt Lewis, 2009. "The Two-Period Rational Inattention Model: Accelerations and Analyses," Computational Economics, Springer;Society for Computational Economics, vol. 33(1), pages 79-97, February.
    4. Karun Adusumilli, 2022. "How to sample and when to stop sampling: The generalized Wald problem and minimax policies," Papers 2210.15841, arXiv.org, revised Feb 2024.
    5. Weijie Zhong, 2018. "The Indirect Cost of Information," Papers 1809.00697, arXiv.org, revised Apr 2020.
    6. Johannes Johnen, 2019. "Automatic‐renewal contracts with heterogeneous consumer inertia," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 28(4), pages 765-786, November.
    7. Bonomo, Marco Antônio Cesar & Terra, Maria Cristina T., 2005. "Special interests and political business cycles," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 597, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    8. George-Marios Angeletos & Chen Lian, 2018. "Forward Guidance without Common Knowledge," American Economic Review, American Economic Association, vol. 108(9), pages 2477-2512, September.
    9. Kim, Duk Gyoo & Yoon, Yeochang, 2019. "A theory of FAQs: Public announcements with rational ignorance," Journal of Economic Behavior & Organization, Elsevier, vol. 158(C), pages 560-574.
    10. Pierre Fleckinger & Matthieu Glachant & Gabrielle Moineville, 2017. "Incentives for Quality in Friendly and Hostile Informational Environments," American Economic Journal: Microeconomics, American Economic Association, vol. 9(1), pages 242-274, February.
    11. Goethner, Maximilian & Hornuf, Lars & Regner, Tobias, 2021. "Protecting investors in equity crowdfunding: An empirical analysis of the small investor protection act," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    12. Sushant Acharya & Shu Lin Wee, 2020. "Rational Inattention in Hiring Decisions," American Economic Journal: Macroeconomics, American Economic Association, vol. 12(1), pages 1-40, January.
    13. Philippe Jehiel & Jakub Steiner, 2020. "Selective Sampling with Information-Storage Constraints [On interim rationality, belief formation and learning in decision problems with bounded memory]," The Economic Journal, Royal Economic Society, vol. 130(630), pages 1753-1781.
    14. Sebastian Eichfelder & Mona Lau, 2015. "Capitalization of capital gains taxes: (In)attention and turn-of-the-year returns," FEMM Working Papers 150019, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    15. Ichiro Fukunaga, 2007. "Imperfect Common Knowledge, Staggered Price Setting, and the Effects of Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1711-1739, October.
    16. Luminita Stevens, 2020. "Coarse Pricing Policies," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(1), pages 420-453.
    17. Bennani, Hamza, 2018. "Media coverage and ECB policy-making: Evidence from an augmented Taylor rule," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 26-38.
    18. Etienne Gagnon & David López-Salido & Nicolas Vincent, 2013. "Individual Price Adjustment along the Extensive Margin," NBER Macroeconomics Annual, University of Chicago Press, vol. 27(1), pages 235-281.
    19. Sergeyev, Dmitriy & Iovino, Luigi, 2018. "Central Bank Balance Sheet Policies Without Rational Expectations," CEPR Discussion Papers 13100, C.E.P.R. Discussion Papers.
    20. Atahan Afsar; José Elías Gallegos; Richard Jaimes; Edgar Silgado Gómez & José Elías Gallegos & Richard Jaimes & Edgar Silgado Gómez, 2020. "Reconciling Empirics and Theory: The Behavioral Hybrid New Keynesian Model," Vniversitas Económica 18560, Universidad Javeriana - Bogotá.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.10448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.