IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.11845.html
   My bibliography  Save this paper

Multimodal Document Analytics for Banking Process Automation

Author

Listed:
  • Christopher Gerling
  • Stefan Lessmann

Abstract

Traditional banks face increasing competition from FinTechs in the rapidly evolving financial ecosystem. Raising operational efficiency is vital to address this challenge. Our study aims to improve the efficiency of document-intensive business processes in banking. To that end, we first review the landscape of business documents in the retail segment. Banking documents often contain text, layout, and visuals, suggesting that document analytics and process automation require more than plain natural language processing (NLP). To verify this and assess the incremental value of visual cues when processing business documents, we compare a recently proposed multimodal model called LayoutXLM to powerful text classifiers (e.g., BERT) and large language models (e.g., GPT) in a case study related to processing company register extracts. The results confirm that incorporating layout information in a model substantially increases its performance. Interestingly, we also observed that more than 75% of the best model performance (in terms of the F1 score) can be achieved with as little as 30% of the training data. This shows that the demand for data labeled data to set up a multi-modal model can be moderate, which simplifies real-world applications of multimodal document analytics. Our study also sheds light on more specific practices in the scope of calibrating a multimodal banking document classifier, including the need for fine-tuning. In sum, the paper contributes original empirical evidence on the effectiveness and efficiency of multi-model models for document processing in the banking business and offers practical guidance on how to unlock this potential in day-to-day operations.

Suggested Citation

  • Christopher Gerling & Stefan Lessmann, 2023. "Multimodal Document Analytics for Banking Process Automation," Papers 2307.11845, arXiv.org, revised Nov 2023.
  • Handle: RePEc:arx:papers:2307.11845
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.11845
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stevenson, Matthew & Mues, Christophe & Bravo, Cristián, 2021. "The value of text for small business default prediction: A Deep Learning approach," European Journal of Operational Research, Elsevier, vol. 295(2), pages 758-771.
    2. Aaryan Gupta & Vinya Dengre & Hamza Abubakar Kheruwala & Manan Shah, 2020. "Comprehensive review of text-mining applications in finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    3. Cuiqing Jiang & Zhao Wang & Ruiya Wang & Yong Ding, 2018. "Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending," Annals of Operations Research, Springer, vol. 266(1), pages 511-529, July.
    4. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    5. Mahsa Tavakoli & Rohitash Chandra & Fengrui Tian & Cristi'an Bravo, 2023. "Multi-Modal Deep Learning for Credit Rating Prediction Using Text and Numerical Data Streams," Papers 2304.10740, arXiv.org, revised Sep 2023.
    6. Sang Il Lee & Seong Joon Yoo, 2019. "Multimodal Deep Learning for Finance: Integrating and Forecasting International Stock Markets," Papers 1903.06478, arXiv.org, revised Sep 2019.
    7. Christopher Gerling, 2023. "Company2Vec -- German Company Embeddings based on Corporate Websites," Papers 2307.09332, arXiv.org.
    8. Mirjana Pejić Bach & Živko Krstić & Sanja Seljan & Lejla Turulja, 2019. "Text Mining for Big Data Analysis in Financial Sector: A Literature Review," Sustainability, MDPI, vol. 11(5), pages 1-27, February.
    9. Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
    10. Tecles, Patricia Langsch & Tabak, Benjamin M., 2010. "Determinants of bank efficiency: The case of Brazil," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1587-1598, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    2. Felix Drinkall & Janet B. Pierrehumbert & Stefan Zohren, 2024. "Traditional Methods Outperform Generative LLMs at Forecasting Credit Ratings," Papers 2407.17624, arXiv.org.
    3. Mahsa Tavakoli & Rohitash Chandra & Fengrui Tian & Cristi'an Bravo, 2023. "Multi-Modal Deep Learning for Credit Rating Prediction Using Text and Numerical Data Streams," Papers 2304.10740, arXiv.org, revised Sep 2023.
    4. Jiang, Cuiqing & Lyu, Ximei & Yuan, Yufei & Wang, Zhao & Ding, Yong, 2022. "Mining semantic features in current reports for financial distress prediction: Empirical evidence from unlisted public firms in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1086-1099.
    5. Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
    6. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2021. "A transformer-based model for default prediction in mid-cap corporate markets," Papers 2111.09902, arXiv.org, revised Apr 2023.
    7. Korangi, Kamesh & Mues, Christophe & Bravo, Cristián, 2023. "A transformer-based model for default prediction in mid-cap corporate markets," European Journal of Operational Research, Elsevier, vol. 308(1), pages 306-320.
    8. Borchert, Philipp & Coussement, Kristof & De Caigny, Arno & De Weerdt, Jochen, 2023. "Extending business failure prediction models with textual website content using deep learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 348-357.
    9. Katsafados, Apostolos G. & Leledakis, George N. & Pyrgiotakis, Emmanouil G. & Androutsopoulos, Ion & Fergadiotis, Manos, 2024. "Machine learning in bank merger prediction: A text-based approach," European Journal of Operational Research, Elsevier, vol. 312(2), pages 783-797.
    10. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    11. Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
    12. Stevenson, Matthew & Mues, Christophe & Bravo, Cristián, 2021. "The value of text for small business default prediction: A Deep Learning approach," European Journal of Operational Research, Elsevier, vol. 295(2), pages 758-771.
    13. Aaryan Gupta & Vinya Dengre & Hamza Abubakar Kheruwala & Manan Shah, 2020. "Comprehensive review of text-mining applications in finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    14. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    15. Wenlu Zhao & Guanghu Jin & Chenyue Huang & Jinji Zhang, 2023. "Attention and Sentiment of the Chinese Public toward a 3D Greening System Based on Sina Weibo," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    16. Abedin, Mohammad Zoynul & Hajek, Petr & Sharif, Taimur & Satu, Md. Shahriare & Khan, Md. Imran, 2023. "Modelling bank customer behaviour using feature engineering and classification techniques," Research in International Business and Finance, Elsevier, vol. 65(C).
    17. Vaneet Bhatia & Sankarshan Basu & Subrata Kumar Mitra & Pradyumna Dash, 2018. "A review of bank efficiency and productivity," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 557-600, November.
    18. Rybinski, Krzysztof, 2020. "The forecasting power of the multi-language narrative of sell-side research: A machine learning evaluation," Finance Research Letters, Elsevier, vol. 34(C).
    19. Rafael Becerra-Vicario & David Alaminos & Eva Aranda & Manuel A. Fernández-Gámez, 2020. "Deep Recurrent Convolutional Neural Network for Bankruptcy Prediction: A Case of the Restaurant Industry," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    20. Oleg Deev & Martin Hodula, 2016. "Sovereign default risk and state-owned bank fragility in emerging markets: evidence from China and Russia," Post-Communist Economies, Taylor & Francis Journals, vol. 28(2), pages 232-248, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.11845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.