IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.10872.html
   My bibliography  Save this paper

Real-Time Detection of Local No-Arbitrage Violations

Author

Listed:
  • Torben G. Andersen
  • Viktor Todorov
  • Bo Zhou

Abstract

This paper focuses on the task of detecting local episodes involving violation of the standard It\^o semimartingale assumption for financial asset prices in real time that might induce arbitrage opportunities. Our proposed detectors, defined as stopping rules, are applied sequentially to continually incoming high-frequency data. We show that they are asymptotically exponentially distributed in the absence of Ito semimartingale violations. On the other hand, when a violation occurs, we can achieve immediate detection under infill asymptotics. A Monte Carlo study demonstrates that the asymptotic results provide a good approximation to the finite-sample behavior of the sequential detectors. An empirical application to S&P 500 index futures data corroborates the effectiveness of our detectors in swiftly identifying the emergence of an extreme return persistence episode in real time.

Suggested Citation

  • Torben G. Andersen & Viktor Todorov & Bo Zhou, 2023. "Real-Time Detection of Local No-Arbitrage Violations," Papers 2307.10872, arXiv.org.
  • Handle: RePEc:arx:papers:2307.10872
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.10872
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    2. Elliott, Graham & Müller, Ulrich K., 2014. "Pre and post break parameter inference," Journal of Econometrics, Elsevier, vol. 180(2), pages 141-157.
    3. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    4. Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
    5. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    6. Diba, Behzad T & Grossman, Herschel I, 1988. "Explosive Rational Bubbles in Stock Prices?," American Economic Review, American Economic Association, vol. 78(3), pages 520-530, June.
    7. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    8. Bai, Jushan, 1996. "Testing for Parameter Constancy in Linear Regressions: An Empirical Distribution Function Approach," Econometrica, Econometric Society, vol. 64(3), pages 597-622, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatolyev Stanislav & Kosenok Grigory, 2018. "Sequential Testing with Uniformly Distributed Size," Journal of Time Series Econometrics, De Gruyter, vol. 10(2), pages 1-22, July.
    2. Cizek, P. & Haerdle, W. & Spokoiny, V., 2007. "Adaptive Pointwise Estimation in Time-Inhomogeneous Time-Series Models," Discussion Paper 2007-35, Tilburg University, Center for Economic Research.
    3. Aue, Alexander & Horváth, Lajos & Reimherr, Matthew L., 2009. "Delay times of sequential procedures for multiple time series regression models," Journal of Econometrics, Elsevier, vol. 149(2), pages 174-190, April.
    4. repec:hum:wpaper:sfb649dp2008-002 is not listed on IDEAS
    5. Blasques, F. & Francq, Christian & Laurent, Sébastien, 2024. "Autoregressive conditional betas," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Christis Katsouris, 2023. "Break-Point Date Estimation for Nonstationary Autoregressive and Predictive Regression Models," Papers 2308.13915, arXiv.org.
    7. Jana Eklund & George Kapetanios & Simon Price, 2013. "Robust Forecast Methods and Monitoring during Structural Change," Manchester School, University of Manchester, vol. 81, pages 3-27, October.
    8. Christis Katsouris, 2023. "Predictability Tests Robust against Parameter Instability," Papers 2307.15151, arXiv.org.
    9. Eklund, Jana & Kapetanios, George & Price, Simon, 2010. "Forecasting in the presence of recent structural change," Bank of England working papers 406, Bank of England.
    10. Qu, Zhongjun, 2008. "Testing for structural change in regression quantiles," Journal of Econometrics, Elsevier, vol. 146(1), pages 170-184, September.
    11. Abhijit Sharma & Kelvin G Balcombe & Iain M Fraser, 2009. "Non-renewable resource prices: Structural breaks and long term trends," Economics Bulletin, AccessEcon, vol. 29(2), pages 805-819.
    12. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    13. Jan J. J. Groen & George Kapetanios & Simon Price, 2013. "Multivariate Methods For Monitoring Structural Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 250-274, March.
    14. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    15. Sjoerd van den Hauwe & Richard Paap & Dick J.C. van Dijk, 2011. "An Alternative Bayesian Approach to Structural Breaks in Time Series Models," Tinbergen Institute Discussion Papers 11-023/4, Tinbergen Institute.
    16. Andrews, Isaiah & Kitagawa, Toru & McCloskey, Adam, 2021. "Inference after estimation of breaks," Journal of Econometrics, Elsevier, vol. 224(1), pages 39-59.
    17. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    18. Pesaran, M. Hashem & Timmermann, Allan, 2005. "Small sample properties of forecasts from autoregressive models under structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 183-217.
    19. Günster, N.K. & Kole, H.J.W.G. & Jacobsen, B., 2009. "Riding Bubbles," ERIM Report Series Research in Management ERS-2009-058-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
    21. Juhl, Ted & Xiao, Zhijie, 2005. "A nonparametric test for changing trends," Journal of Econometrics, Elsevier, vol. 127(2), pages 179-199, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.10872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.