IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v70y2004i1p19-24.html
   My bibliography  Save this article

On oscillations of the geometric Brownian motion with time-delayed drift

Author

Listed:
  • Gushchin, Alexander A.
  • Küchler, Uwe

Abstract

The geometric Brownian motion is the solution of a linear stochastic differential equation in the Itô sense. If one adds to the drift term a possible nonlinear time-delayed term and starts with a non-negative initial process then the process generated in this way, may hit zero and may oscillate around zero infinitely many times depending on properties of both the drift terms and the diffusion constant.

Suggested Citation

  • Gushchin, Alexander A. & Küchler, Uwe, 2004. "On oscillations of the geometric Brownian motion with time-delayed drift," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 19-24, October.
  • Handle: RePEc:eee:stapro:v:70:y:2004:i:1:p:19-24
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00194-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Appleby, John A. D. & Buckwar, Evelyn, 2003. "Noise Induced Oscillation in Solutions of Stochastic Delay Differential Equations," SFB 373 Discussion Papers 2003,9, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ankush Agarwal & Stefano de Marco & Emmanuel Gobet & Gang Liu, 2017. "Rare event simulation related to financial risks: efficient estimation and sensitivity analysis," Working Papers hal-01219616, HAL.
    2. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    3. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    4. Michel Vellekoop & Hans Nieuwenhuis, 2007. "On option pricing models in the presence of heavy tails," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 563-573.
    5. Sekine, Jun, 2008. "Marginal distribution of some path-dependent stochastic volatility model," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1846-1850, September.
    6. Ofelia Bonesini & Antoine Jacquier & Chloe Lacombe, 2020. "A theoretical analysis of Guyon's toy volatility model," Papers 2001.05248, arXiv.org, revised Nov 2022.
    7. Mercedes Arriojas & Yaozhong Hu & Salah-Eldin Mohammed & Gyula Pap, 2006. "A Delayed Black and Scholes Formula I," Papers math/0604640, arXiv.org.
    8. L. Lin & M. Schatz & D. Sornette, 2019. "A simple mechanism for financial bubbles: time-varying momentum horizon," Quantitative Finance, Taylor & Francis Journals, vol. 19(6), pages 937-959, June.
    9. Yang Wang & Xiao Xu & Jizhou Zhang, 2021. "Optimal Investment Strategy for DC Pension Plan with Stochastic Income and Inflation Risk under the Ornstein–Uhlenbeck Model," Mathematics, MDPI, vol. 9(15), pages 1-15, July.
    10. Pagliarani, S. & Pascucci, A. & Pignotti, M., 2017. "Intrinsic expansions for averaged diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2560-2585.
    11. Andrea Pascucci & Marco Di Francesco, 2005. "On the complete model with stochastic volatility by Hobson and Rogers," Finance 0503013, University Library of Munich, Germany.
    12. David Hobson, 2010. "Comparison results for stochastic volatility models via coupling," Finance and Stochastics, Springer, vol. 14(1), pages 129-152, January.
    13. Hafner, Christian M. & Laurent, Sebastien & Violante, Francesco, 2017. "Weak Diffusion Limits Of Dynamic Conditional Correlation Models," Econometric Theory, Cambridge University Press, vol. 33(3), pages 691-716, June.
    14. Peter A. Abken & Saikat Nandi, 1996. "Options and volatility," Economic Review, Federal Reserve Bank of Atlanta, vol. 81(Dec), pages 21-35.
    15. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    16. Carey, Alexander, 2008. "Natural volatility and option pricing," MPRA Paper 6709, University Library of Munich, Germany.
    17. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    18. Paolo Foschi & Andrea Pascucci, 2008. "Path dependent volatility," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(1), pages 13-32, May.
    19. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    20. Robert Kohn & Oana Papazoglu-Statescu, 2006. "On the equivalence of the static and dynamic asset allocation problems," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 173-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:70:y:2004:i:1:p:19-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.