IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.00476.html
   My bibliography  Save this paper

Pricing European Options with Google AutoML, TensorFlow, and XGBoost

Author

Listed:
  • Juan Esteban Berger

Abstract

Researchers have been using Neural Networks and other related machine-learning techniques to price options since the early 1990s. After three decades of improvements in machine learning techniques, computational processing power, cloud computing, and data availability, this paper is able to provide a comparison of using Google Cloud's AutoML Regressor, TensorFlow Neural Networks, and XGBoost Gradient Boosting Decision Trees for pricing European Options. All three types of models were able to outperform the Black Scholes Model in terms of mean absolute error. These results showcase the potential of using historical data from an option's underlying asset for pricing European options, especially when using machine learning algorithms that learn complex patterns that traditional parametric models do not take into account.

Suggested Citation

  • Juan Esteban Berger, 2023. "Pricing European Options with Google AutoML, TensorFlow, and XGBoost," Papers 2307.00476, arXiv.org.
  • Handle: RePEc:arx:papers:2307.00476
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.00476
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models," Finance and Stochastics, Springer, vol. 25(4), pages 615-657, October.
    2. Anindya Goswami & Nimit Rana, 2024. "A market resilient data-driven approach to option pricing," Papers 2409.08205, arXiv.org.
    3. Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
    4. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    5. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    6. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    7. Lukas Gonon, 2024. "Deep neural network expressivity for optimal stopping problems," Finance and Stochastics, Springer, vol. 28(3), pages 865-910, July.
    8. Francesca Biagini & Lukas Gonon & Thomas Reitsam, 2021. "Neural network approximation for superhedging prices," Papers 2107.14113, arXiv.org.
    9. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2023. "Deep stochastic optimization in finance," Digital Finance, Springer, vol. 5(1), pages 91-111, March.
    10. Damiano Brigo & Xiaoshan Huang & Andrea Pallavicini & Haitz Saez de Ocariz Borde, 2021. "Interpretability in deep learning for finance: a case study for the Heston model," Papers 2104.09476, arXiv.org.
    11. Ryno du Plooy & Pierre J. Venter, 2021. "A Comparison of Artificial Neural Networks and Bootstrap Aggregating Ensembles in a Modern Financial Derivative Pricing Framework," JRFM, MDPI, vol. 14(6), pages 1-18, June.
    12. Thomas Krabichler & Marcus Wunsch, 2021. "Hedging Goals," Papers 2105.07915, arXiv.org, revised Oct 2021.
    13. Antal Ratku & Dirk Neumann, 2022. "Derivatives of feed-forward neural networks and their application in real-time market risk management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 947-965, September.
    14. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    15. Thomas Krabichler & Marcus Wunsch, 2024. "Hedging goals," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 38(1), pages 93-122, March.
    16. Kathrin Glau & Linus Wunderlich, 2020. "The Deep Parametric PDE Method: Application to Option Pricing," Papers 2012.06211, arXiv.org.
    17. Shuaiqiang Liu & 'Alvaro Leitao & Anastasia Borovykh & Cornelis W. Oosterlee, 2020. "On Calibration Neural Networks for extracting implied information from American options," Papers 2001.11786, arXiv.org.
    18. Christa Cuchiero & Eva Flonner & Kevin Kurt, 2024. "Robust financial calibration: a Bayesian approach for neural SDEs," Papers 2409.06551, arXiv.org, revised Sep 2024.
    19. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    20. Shi, Ruoshi & Zhao, Yanlong & Bao, Ying & Peng, Cheng, 2022. "Sensitivity-based Conditional Value at Risk (SCVaR): An efficient measurement of credit exposure for options," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.00476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.