IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.18136.html
   My bibliography  Save this paper

Exponential Utility Maximization in a Discrete Time Gaussian Framework

Author

Listed:
  • Yan Dolinsky
  • Or Zuk

Abstract

The aim of this short note is to present a solution to the discrete time exponential utility maximization problem in a case where the underlying asset has a multivariate normal distribution. In addition to the usual setting considered in Mathematical Finance, we also consider an investor who is informed about the risky asset's price changes with a delay. Our method of solution is based on the theory developed in [4] and guessing the optimal portfolio.

Suggested Citation

  • Yan Dolinsky & Or Zuk, 2023. "Exponential Utility Maximization in a Discrete Time Gaussian Framework," Papers 2305.18136, arXiv.org, revised Jun 2023.
  • Handle: RePEc:arx:papers:2305.18136
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.18136
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Bank & Yan Dolinsky, 2020. "A Note on Utility Indifference Pricing with Delayed Information," Papers 2011.05023, arXiv.org, revised Mar 2021.
    2. Rüdiger Frey, 2000. "Risk Minimization with Incomplete Information in a Model for High‐Frequency Data," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 215-225, April.
    3. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Dolinsky & Or Zuk, 2023. "Explicit Computations for Delayed Semistatic Hedging," Papers 2308.10550, arXiv.org, revised Sep 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Dolinsky, 2023. "Delayed Semi-static Hedging in the Continuous Time Bachelier Model," Papers 2311.17270, arXiv.org, revised Sep 2024.
    2. Yan Dolinsky & Or Zuk, 2023. "Explicit Computations for Delayed Semistatic Hedging," Papers 2308.10550, arXiv.org, revised Sep 2024.
    3. İşcanoğlu-Çekiç, Ayşegül & Gülteki̇n, Havva, 2019. "Are cross-correlations between Turkish Stock Exchange and three major country indices multifractal or monofractal?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 978-990.
    4. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    5. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    6. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    7. Anders Johansson, 2009. "An analysis of dynamic risk in the Greater China equity markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 7(3), pages 299-320.
    8. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    9. Cornelis A. Los, 2004. "Nonparametric Efficiency Testing of Asian Stock Markets Using Weekly Data," Finance 0409033, University Library of Munich, Germany.
    10. Zeinali, Narges & Pourdarvish, Ahmad, 2022. "An entropy-based estimator of the Hurst exponent in fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    11. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    12. Pierre Perron & Eduardo Zorita & Wen Cao & Clifford Hurvich & Philippe Soulier, 2017. "Drift in Transaction-Level Asset Price Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 769-790, September.
    13. Nadiezhda de la Uz, 2002. "La hipótesis de martingala en el mercado bursátil mexicano," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 17(1), pages 91-127.
    14. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    15. Krämer, Walter & Sibbertsen, Philipp & Kleiber, Christian, 2001. "Long memory vs. structural change in financial time series," Technical Reports 2001,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    16. Chkili, Walid & Aloui, Chaker & Nguyen, Duc Khuong, 2012. "Asymmetric effects and long memory in dynamic volatility relationships between stock returns and exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 738-757.
    17. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    18. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    19. repec:ipg:wpaper:2014-503 is not listed on IDEAS
    20. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    21. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.18136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.