IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/8217.html
   My bibliography  Save this paper

Nearest convex hull classification

Author

Listed:
  • Nalbantov, G.I.
  • Groenen, P.J.F.
  • Bioch, J.C.

Abstract

Consider the classification task of assigning a test object to one of two or more possible groups, or classes. An intuitive way to proceed is to assign the object to that class, to which the distance is minimal. As a distance measure to a class, we propose here to use the distance to the convex hull of that class. Hence the name Nearest Convex Hull (NCH) classification for the method. Convex-hull overlap is handled through the introduction of slack variables and kernels. In spirit and computationally the method is therefore close to the popular Support Vector Machine (SVM) classifier. Advantages of the NCH classifier are its robustness to outliers, good regularization properties and relatively easy handling of multi-class problems. We compare the performance of NCH against state-of-art techniques and report promising results.

Suggested Citation

  • Nalbantov, G.I. & Groenen, P.J.F. & Bioch, J.C., 2006. "Nearest convex hull classification," Econometric Institute Research Papers EI 2006-50, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:8217
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/8217/NCH10.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Chok & Geoffrey M. Vasil, 2023. "Convex optimization over a probability simplex," Papers 2305.09046, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:8217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.