IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.03565.html
   My bibliography  Save this paper

The geometry of financial institutions -- Wasserstein clustering of financial data

Author

Listed:
  • Lorenz Riess
  • Mathias Beiglbock
  • Johannes Temme
  • Andreas Wolf
  • Julio Backhoff

Abstract

The increasing availability of granular and big data on various objects of interest has made it necessary to develop methods for condensing this information into a representative and intelligible map. Financial regulation is a field that exemplifies this need, as regulators require diverse and often highly granular data from financial institutions to monitor and assess their activities. However, processing and analyzing such data can be a daunting task, especially given the challenges of dealing with missing values and identifying clusters based on specific features. To address these challenges, we propose a variant of Lloyd's algorithm that applies to probability distributions and uses generalized Wasserstein barycenters to construct a metric space which represents given data on various objects in condensed form. By applying our method to the financial regulation context, we demonstrate its usefulness in dealing with the specific challenges faced by regulators in this domain. We believe that our approach can also be applied more generally to other fields where large and complex data sets need to be represented in concise form.

Suggested Citation

  • Lorenz Riess & Mathias Beiglbock & Johannes Temme & Andreas Wolf & Julio Backhoff, 2023. "The geometry of financial institutions -- Wasserstein clustering of financial data," Papers 2305.03565, arXiv.org.
  • Handle: RePEc:arx:papers:2305.03565
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.03565
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jocelyn T. Chi & Eric C. Chi & Richard G. Baraniuk, 2016. "k -POD: A Method for k -Means Clustering of Missing Data," The American Statistician, Taylor & Francis Journals, vol. 70(1), pages 91-99, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleix Alcacer & Irene Epifanio & Jorge Valero & Alfredo Ballester, 2021. "Combining Classification and User-Based Collaborative Filtering for Matching Footwear Size," Mathematics, MDPI, vol. 9(7), pages 1-15, April.
    2. Rabea Aschenbruck & Gero Szepannek & Adalbert F. X. Wilhelm, 2023. "Imputation Strategies for Clustering Mixed-Type Data with Missing Values," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 2-24, April.
    3. Vincent Audigier & Ndèye Niang, 2023. "Clustering with missing data: which equivalent for Rubin’s rules?," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 623-657, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.03565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.