IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.00565.html
   My bibliography  Save this paper

Non-decreasing martingale couplings

Author

Listed:
  • Benjamin Jourdain
  • Kexin Shao

Abstract

For many examples of couples $(\mu,\nu)$ of probability measures on the real line in the convex order, we observe numerically that the Hobson and Neuberger martingale coupling, which maximizes for $\rho=1$ the integral of $|y-x|^\rho$ with respect to any martingale coupling between $\mu$ and $\nu$, is still a maximizer for $\rho\in(0,2)$ and a minimizer for $\rho>2$. We investigate the theoretical validity of this numerical observation and give rather restrictive sufficient conditions for the property to hold. We also exhibit couples $(\mu,\nu)$ such that it does not hold. The support of the Hobson and Neuberger coupling is known to satisfy some monotonicity property which we call non-decreasing. We check that the non-decreasing property is preserved for maximizers when $\rho\in(0,1]$. In general, there exist distinct non-decreasing martingale couplings, and we find some decomposition of $\nu$ which is in one-to-one correspondence with martingale couplings non-decreasing in a generalized sense.

Suggested Citation

  • Benjamin Jourdain & Kexin Shao, 2023. "Non-decreasing martingale couplings," Papers 2305.00565, arXiv.org.
  • Handle: RePEc:arx:papers:2305.00565
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.00565
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.
    2. David Hobson & Martin Klimmek, 2015. "Robust price bounds for the forward starting straddle," Finance and Stochastics, Springer, vol. 19(1), pages 189-214, January.
    3. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    4. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    5. Aurélien Alfonsi & Jacopo Corbetta & Benjamin Jourdain, 2019. "Sampling Of One-Dimensional Probability Measures In The Convex Order And Computation Of Robust Option Price Bounds," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-41, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julian Sester, 2023. "On intermediate Marginals in Martingale Optimal Transportation," Papers 2307.09710, arXiv.org, revised Nov 2023.
    2. Benjamin Jourdain & Gilles Pagès, 2022. "Convex Order, Quantization and Monotone Approximations of ARCH Models," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2480-2517, December.
    3. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    4. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    5. Ariel Neufeld & Julian Sester, 2021. "On the stability of the martingale optimal transport problem: A set-valued map approach," Papers 2102.02718, arXiv.org, revised Apr 2021.
    6. Neufeld, Ariel & Sester, Julian, 2021. "On the stability of the martingale optimal transport problem: A set-valued map approach," Statistics & Probability Letters, Elsevier, vol. 176(C).
    7. Marcel Nutz & Florian Stebegg, 2016. "Canonical Supermartingale Couplings," Papers 1609.02867, arXiv.org, revised Nov 2017.
    8. Nutz, Marcel & Stebegg, Florian & Tan, Xiaowei, 2020. "Multiperiod martingale transport," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1568-1615.
    9. Luciano Campi & Ismail Laachir & Claude Martini, 2017. "Change of numeraire in the two-marginals martingale transport problem," Finance and Stochastics, Springer, vol. 21(2), pages 471-486, April.
    10. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2016. "An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2800-2834.
    11. Marcel Nutz & Florian Stebegg & Xiaowei Tan, 2017. "Multiperiod Martingale Transport," Papers 1703.10588, arXiv.org, revised May 2019.
    12. Sergey Badikov & Antoine Jacquier & Daphne Qing Liu & Patrick Roome, 2016. "No-arbitrage bounds for the forward smile given marginals," Papers 1603.06389, arXiv.org, revised Oct 2016.
    13. Linn Engstrom & Sigrid Kallblad & Johan Karlsson, 2024. "Computation of Robust Option Prices via Structured Multi-Marginal Martingale Optimal Transport," Papers 2406.09959, arXiv.org.
    14. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    15. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    16. Sester, Julian, 2024. "A multi-marginal c-convex duality theorem for martingale optimal transport," Statistics & Probability Letters, Elsevier, vol. 210(C).
    17. David Hobson & Dominykas Norgilas, 2017. "Robust bounds for the American Put," Papers 1711.06466, arXiv.org, revised May 2018.
    18. Huesmann, Martin & Stebegg, Florian, 2018. "Monotonicity preserving transformations of MOT and SEP," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1114-1134.
    19. Ariel Neufeld & Julian Sester, 2021. "Model-free price bounds under dynamic option trading," Papers 2101.01024, arXiv.org, revised Jul 2021.
    20. Nicole Bäuerle & Daniel Schmithals, 2019. "Martingale optimal transport in the discrete case via simple linear programming techniques," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(3), pages 453-476, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.00565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.