IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i4p1114-1134.html
   My bibliography  Save this article

Monotonicity preserving transformations of MOT and SEP

Author

Listed:
  • Huesmann, Martin
  • Stebegg, Florian

Abstract

Recently, Beiglböck and Juillet (2016) and Beiglböck et al. (2015) established that optimizers to the martingale optimal transport problem (MOT) are concentrated on c-monotone sets. In this article we characterize monotonicity preserving transformations revealing certain symmetries between optimizers of MOT for different cost functions. Due to the intimate connection of MOT and the Skorokhod embedding problem (SEP) these transformations are also monotonicity preserving and disclose symmetries for certain solutions to the optimal SEP. Furthermore, the SEP picture allows to easily understand the geometry of these transformations once we have established the SEP counterparts to the known solutions of MOT based on the monotonicity principle for SEP which in turn allows to directly read off the structure of the MOT optimizers.

Suggested Citation

  • Huesmann, Martin & Stebegg, Florian, 2018. "Monotonicity preserving transformations of MOT and SEP," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1114-1134.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:4:p:1114-1134
    DOI: 10.1016/j.spa.2017.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917301734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Dolinsky & H. M. Soner, 2014. "Martingale optimal transport in the Skorokhod space," Papers 1404.1516, arXiv.org, revised Feb 2015.
    2. Mathias Beiglboeck & Pierre Henry-Labordere & Nizar Touzi, 2017. "Monotone Martingale Transport Plans and Skorohod Embedding," Papers 1701.06779, arXiv.org.
    3. A. Galichon & P. Henry-Labord`ere & N. Touzi, 2014. "A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options," Papers 1401.3921, arXiv.org.
    4. David Hobson & Martin Klimmek, 2015. "Robust price bounds for the forward starting straddle," Finance and Stochastics, Springer, vol. 19(1), pages 189-214, January.
    5. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    6. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Tightness and duality of martingale transport on the Skorokhod space," Papers 1507.01125, arXiv.org, revised Aug 2016.
    7. Beiglböck, Mathias & Henry-Labordère, Pierre & Touzi, Nizar, 2017. "Monotone martingale transport plans and Skorokhod embedding," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 3005-3013.
    8. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    9. Dolinsky, Yan & Soner, H. Mete, 2015. "Martingale optimal transport in the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3893-3931.
    10. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    11. Zhaoxu Hou & Jan Obloj, 2015. "On robust pricing-hedging duality in continuous time," Papers 1503.02822, arXiv.org, revised Jul 2015.
    12. Florian Stebegg, 2014. "Model-Independent Pricing of Asian Options via Optimal Martingale Transport," Papers 1412.1429, arXiv.org.
    13. Luciano Campi & Ismail Laachir & Claude Martini, 2014. "Change of numeraire in the two-marginals martingale transport problem," Papers 1406.6951, arXiv.org, revised Mar 2016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole Bäuerle & Daniel Schmithals, 2019. "Martingale optimal transport in the discrete case via simple linear programming techniques," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(3), pages 453-476, December.
    2. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nutz, Marcel & Stebegg, Florian & Tan, Xiaowei, 2020. "Multiperiod martingale transport," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1568-1615.
    2. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    3. Marcel Nutz & Florian Stebegg, 2016. "Canonical Supermartingale Couplings," Papers 1609.02867, arXiv.org, revised Nov 2017.
    4. Gaoyue Guo & Jan Obloj, 2017. "Computational Methods for Martingale Optimal Transport problems," Papers 1710.07911, arXiv.org, revised Apr 2019.
    5. Mathias Beiglbock & Marcel Nutz & Nizar Touzi, 2015. "Complete Duality for Martingale Optimal Transport on the Line," Papers 1507.00671, arXiv.org, revised Jun 2016.
    6. Marcel Nutz & Florian Stebegg & Xiaowei Tan, 2017. "Multiperiod Martingale Transport," Papers 1703.10588, arXiv.org, revised May 2019.
    7. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    8. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    9. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Optimal Skorokhod embedding under finitely-many marginal constraints," Papers 1506.04063, arXiv.org, revised Aug 2016.
    10. Acciaio, Beatrice & Larsson, Martin, 2017. "Semi-static completeness and robust pricing by informed investors," LSE Research Online Documents on Economics 68502, London School of Economics and Political Science, LSE Library.
    11. Cox, Alexander M.G. & Kinsley, Sam M., 2019. "Discretisation and duality of optimal Skorokhod embedding problems," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2376-2405.
    12. Nassif Ghoussoub & Young-Heon Kim & Tongseok Lim, 2017. "Optimal Brownian Stopping between radially symmetric marginals in general dimensions," Papers 1711.02784, arXiv.org.
    13. Patrick Cheridito & Matti Kiiski & David J. Promel & H. Mete Soner, 2019. "Martingale optimal transport duality," Papers 1904.04644, arXiv.org, revised Nov 2020.
    14. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    15. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    16. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    17. Johannes Muhle-Karbe & Marcel Nutz, 2016. "A Risk-Neutral Equilibrium Leading to Uncertain Volatility Pricing," Papers 1612.09152, arXiv.org, revised Jan 2018.
    18. Ibrahim Ekren & H. Mete Soner, 2016. "Constrained Optimal Transport," Papers 1610.02940, arXiv.org, revised Sep 2017.
    19. Daniel Bartl & Michael Kupper & David J. Promel & Ludovic Tangpi, 2017. "Duality for pathwise superhedging in continuous time," Papers 1705.02933, arXiv.org, revised Apr 2019.
    20. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2016. "Hedging with Small Uncertainty Aversion," Papers 1605.06429, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:4:p:1114-1134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.