IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.06217.html
   My bibliography  Save this paper

Art-ificial Intelligence: The Effect of AI Disclosure on Evaluations of Creative Content

Author

Listed:
  • Manav Raj
  • Justin Berg
  • Rob Seamans

Abstract

The emergence of generative AI technologies, such as OpenAI's ChatGPT chatbot, has expanded the scope of tasks that AI tools can accomplish and enabled AI-generated creative content. In this study, we explore how disclosure regarding the use of AI in the creation of creative content affects human evaluation of such content. In a series of pre-registered experimental studies, we show that AI disclosure has no meaningful effect on evaluation either for creative or descriptive short stories, but that AI disclosure has a negative effect on evaluations for emotionally evocative poems written in the first person. We interpret this result to suggest that reactions to AI-generated content may be negative when the content is viewed as distinctly "human." We discuss the implications of this work and outline planned pathways of research to better understand whether and when AI disclosure may affect the evaluation of creative content.

Suggested Citation

  • Manav Raj & Justin Berg & Rob Seamans, 2023. "Art-ificial Intelligence: The Effect of AI Disclosure on Evaluations of Creative Content," Papers 2303.06217, arXiv.org, revised Jun 2024.
  • Handle: RePEc:arx:papers:2303.06217
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.06217
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seo Young Kim & Bernd H. Schmitt & Nadia M. Thalmann, 2019. "Eliza in the uncanny valley: anthropomorphizing consumer robots increases their perceived warmth but decreases liking," Marketing Letters, Springer, vol. 30(1), pages 1-12, March.
    2. Logg, Jennifer M. & Minson, Julia A. & Moore, Don A., 2019. "Algorithm appreciation: People prefer algorithmic to human judgment," Organizational Behavior and Human Decision Processes, Elsevier, vol. 151(C), pages 90-103.
    3. Xueming Luo & Siliang Tong & Zheng Fang & Zhe Qu, 2019. "Frontiers: Machines vs. Humans: The Impact of Artificial Intelligence Chatbot Disclosure on Customer Purchases," Marketing Science, INFORMS, vol. 38(6), pages 937-947, November.
    4. Mahmud, Hasan & Islam, A.K.M. Najmul & Ahmed, Syed Ishtiaque & Smolander, Kari, 2022. "What influences algorithmic decision-making? A systematic literature review on algorithm aversion," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    5. Siliang Tong & Nan Jia & Xueming Luo & Zheng Fang, 2021. "The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance," Strategic Management Journal, Wiley Blackwell, vol. 42(9), pages 1600-1631, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Yang & Jing Hu, 2022. "When do consumers prefer AI-enabled customer service? The interaction effect of brand personality and service provision type on brand attitudes and purchase intentions," Journal of Brand Management, Palgrave Macmillan, vol. 29(2), pages 167-189, March.
    2. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    3. Siliang Tong & Nan Jia & Xueming Luo & Zheng Fang, 2021. "The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance," Strategic Management Journal, Wiley Blackwell, vol. 42(9), pages 1600-1631, September.
    4. Mahmud, Hasan & Islam, A.K.M. Najmul & Ahmed, Syed Ishtiaque & Smolander, Kari, 2022. "What influences algorithmic decision-making? A systematic literature review on algorithm aversion," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    5. Baabdullah, Abdullah M. & Alalwan, Ali Abdallah & Algharabat, Raed S. & Metri, Bhimaraya & Rana, Nripendra P., 2022. "Virtual agents and flow experience: An empirical examination of AI-powered chatbots," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    6. Zhu, Yimin & Zhang, Jiemin & Wu, Jifei & Liu, Yingyue, 2022. "AI is better when I'm sure: The influence of certainty of needs on consumers' acceptance of AI chatbots," Journal of Business Research, Elsevier, vol. 150(C), pages 642-652.
    7. Jana Holthöwer & Jenny Doorn, 2023. "Robots do not judge: service robots can alleviate embarrassment in service encounters," Journal of the Academy of Marketing Science, Springer, vol. 51(4), pages 767-784, July.
    8. Scott Schanke & Gordon Burtch & Gautam Ray, 2021. "Estimating the Impact of “Humanizing” Customer Service Chatbots," Information Systems Research, INFORMS, vol. 32(3), pages 736-751, September.
    9. Peng, Leiqing & Luo, Mengting & Guo, Yulang, 2023. "Deposit AI as the “invisible hand†to make the resale easier: A moderated mediation model," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    10. Mari, Alex & Mandelli, Andreina & Algesheimer, René, 2024. "Empathic voice assistants: Enhancing consumer responses in voice commerce," Journal of Business Research, Elsevier, vol. 175(C).
    11. Yang, Yikai & Zheng, Jiehui & Yu, Yining & Qiu, Yiling & Wang, Lei, 2024. "The role of recommendation sources and attribute framing in online product recommendations," Journal of Business Research, Elsevier, vol. 174(C).
    12. Brüns, Jasper David & Meißner, Martin, 2024. "Do you create your content yourself? Using generative artificial intelligence for social media content creation diminishes perceived brand authenticity," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    13. Zhang, Yaqiong & Wang, Shifu, 2023. "The influence of anthropomorphic appearance of artificial intelligence products on consumer behavior and brand evaluation under different product types," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).
    14. Alexia GAUDEUL & Caterina GIANNETTI, 2023. "Trade-offs in the design of financial algorithms," Discussion Papers 2023/288, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    15. Zulia Gubaydullina & Jan René Judek & Marco Lorenz & Markus Spiwoks, 2022. "Comparing Different Kinds of Influence on an Algorithm in Its Forecasting Process and Their Impact on Algorithm Aversion," Businesses, MDPI, vol. 2(4), pages 1-23, October.
    16. Jonas Wanner & Lukas-Valentin Herm & Kai Heinrich & Christian Janiesch, 2022. "The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2079-2102, December.
    17. Mahmud, Hasan & Islam, A.K.M. Najmul & Mitra, Ranjan Kumar, 2023. "What drives managers towards algorithm aversion and how to overcome it? Mitigating the impact of innovation resistance through technology readiness," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    18. Chugunova, Marina & Sele, Daniela, 2022. "We and It: An interdisciplinary review of the experimental evidence on how humans interact with machines," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 99(C).
    19. Elizabeth Han & Dezhi Yin & Han Zhang, 2023. "Bots with Feelings: Should AI Agents Express Positive Emotion in Customer Service?," Information Systems Research, INFORMS, vol. 34(3), pages 1296-1311, September.
    20. Shengxing Yang, 2022. "A systematic literature review on the disruptions of artificial intelligence within the business world: in terms of the evolution of competences [Une revue systématique de la littérature sur les bo," Post-Print hal-03694170, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.06217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.