IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.07573.html
   My bibliography  Save this paper

Mapping Local Green Hydrogen Cost-Potentials by a Multidisciplinary Approach

Author

Listed:
  • Shitab Ishmam
  • Heidi Heinrichs
  • Christoph Winkler
  • Bagher Bayat
  • Amin Lahnaoui
  • Solomon Agbo
  • Edgar Ubaldo Pena Sanchez
  • David Franzmann
  • Nathan Ojieabu
  • Celine Koerner
  • Youpele Micheal
  • Bamidele Oloruntoba
  • Carsten Montzka
  • Harry Vereecken
  • Harrie-Jan Hendricks-Franssen
  • Jeerawan Brendt
  • Simon Brauner
  • Wilhelm Kuckshinrichs
  • Sandra Venghaus
  • Daouda Kone
  • Bruno Korgo
  • Kehinde Ogunjobi
  • Vasco Chiteculo
  • Jane Olwoch
  • Zachary Getenga
  • Jochen Lin{ss}en
  • Detlef Stolten

Abstract

For fast-tracking climate change response, green hydrogen is key for achieving greenhouse gas neutral energy systems. Especially Sub-Saharan Africa can benefit from it enabling an increased access to clean energy through utilizing its beneficial conditions for renewable energies. However, developing green hydrogen strategies for Sub-Saharan Africa requires highly detailed and consistent information ranging from technical, environmental, economic, and social dimensions, which is currently lacking in literature. Therefore, this paper provides a comprehensive novel approach embedding the required range of disciplines to analyze green hydrogen cost-potentials in Sub-Saharan Africa. This approach stretches from a dedicated land eligibility based on local preferences, a location specific renewable energy simulation, locally derived sustainable groundwater limitations under climate change, an optimization of local hydrogen energy systems, and a socio-economic indicator-based impact analysis. The capability of the approach is shown for case study regions in Sub-Saharan Africa highlighting the need for a unified, interdisciplinary approach.

Suggested Citation

  • Shitab Ishmam & Heidi Heinrichs & Christoph Winkler & Bagher Bayat & Amin Lahnaoui & Solomon Agbo & Edgar Ubaldo Pena Sanchez & David Franzmann & Nathan Ojieabu & Celine Koerner & Youpele Micheal & Ba, 2024. "Mapping Local Green Hydrogen Cost-Potentials by a Multidisciplinary Approach," Papers 2407.07573, arXiv.org.
  • Handle: RePEc:arx:papers:2407.07573
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.07573
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ebert, Udo & Welsch, Heinz, 2004. "Meaningful environmental indices: a social choice approach," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 270-283, March.
    2. Welder, Lara & Ryberg, D.Severin & Kotzur, Leander & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2018. "Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany," Energy, Elsevier, vol. 158(C), pages 1130-1149.
    3. Mentis, Dimitrios & Hermann, Sebastian & Howells, Mark & Welsch, Manuel & Siyal, Shahid Hussain, 2015. "Assessing the technical wind energy potential in Africa a GIS-based approach," Renewable Energy, Elsevier, vol. 83(C), pages 110-125.
    4. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    5. David Franzmann & Heidi Heinrichs & Felix Lippkau & Thushara Addanki & Christoph Winkler & Patrick Buchenberg & Thomas Hamacher & Markus Blesl & Jochen Lin{ss}en & Detlef Stolten, 2023. "Green Hydrogen Cost-Potentials for Global Trade," Papers 2303.00314, arXiv.org, revised May 2023.
    6. Zhou, P. & Ang, B.W. & Poh, K.L., 2007. "A mathematical programming approach to constructing composite indicators," Ecological Economics, Elsevier, vol. 62(2), pages 291-297, April.
    7. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    8. Aghahosseini, Arman & Breyer, Christian, 2020. "From hot rock to useful energy: A global estimate of enhanced geothermal systems potential," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. Winkler & H. Heinrichs & S. Ishmam & B. Bayat & A. Lahnaoui & S. Agbo & E. U. Pe~na Sanchez & D. Franzmann & N. Oijeabou & C. Koerner & Y. Michael & B. Oloruntoba & C. Montzka & H. Vereecken & H. H, 2024. "Participatory Mapping of Local Green Hydrogen Cost-Potentials in Sub-Saharan Africa," Papers 2408.10184, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    2. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    3. Salvatore Greco & Alessio Ishizaka & Menelaos Tasiou & Gianpiero Torrisi, 2019. "On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 61-94, January.
    4. Blancard, Stéphane & Hoarau, Jean-François, 2013. "A new sustainable human development indicator for small island developing states: A reappraisal from data envelopment analysis," Economic Modelling, Elsevier, vol. 30(C), pages 623-635.
    5. P. Zhou & B. Ang, 2009. "Comparing MCDA Aggregation Methods in Constructing Composite Indicators Using the Shannon-Spearman Measure," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 94(1), pages 83-96, October.
    6. Athanassoglou, Stergios, 2015. "Revisiting Worst-case DEA for Composite Indicators," Climate Change and Sustainable Development 198712, Fondazione Eni Enrico Mattei (FEEM).
    7. Danijela Despotovic & Slobodan Cvetanovic & Vladimir Nedic & Milan Despotovic, 2019. "Social Aspects of Sustainable Competitiveness in the Selected European Countries in the Period 2012–2015," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(2), pages 841-860, January.
    8. Jung, Christopher & Schindler, Dirk, 2022. "On the influence of wind speed model resolution on the global technical wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. David Franzmann & Heidi Heinrichs & Felix Lippkau & Thushara Addanki & Christoph Winkler & Patrick Buchenberg & Thomas Hamacher & Markus Blesl & Jochen Lin{ss}en & Detlef Stolten, 2023. "Green Hydrogen Cost-Potentials for Global Trade," Papers 2303.00314, arXiv.org, revised May 2023.
    10. Ju, Keyi & Su, Bin & Zhou, Dequn & Zhou, P. & Zhang, Yuqiang, 2015. "Oil price crisis response: Capability assessment and key indicator identification," Energy, Elsevier, vol. 93(P2), pages 1353-1360.
    11. Francesca Giambona & Erasmo Vassallo, 2014. "Composite Indicator of Social Inclusion for European Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 116(1), pages 269-293, March.
    12. Fusco, Elisa & Maggi, Bernardo & Rizzuto, Livia, 2022. "Alternative indicators for the evaluation of renewables in Europe: An efficiency approach," Renewable Energy, Elsevier, vol. 190(C), pages 48-65.
    13. Verbunt, Pim & Rogge, Nicky, 2018. "Geometric composite indicators with compromise Benefit-of-the-Doubt weights," European Journal of Operational Research, Elsevier, vol. 264(1), pages 388-401.
    14. Hatefi, S.M. & Torabi, S.A., 2010. "A common weight MCDA-DEA approach to construct composite indicators," Ecological Economics, Elsevier, vol. 70(1), pages 114-120, November.
    15. P. Zhou & B. Ang & D. Zhou, 2010. "Weighting and Aggregation in Composite Indicator Construction: a Multiplicative Optimization Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 96(1), pages 169-181, March.
    16. Tianjiao Wang & Yelin Fu, 2020. "Constructing Composite Indicators with Individual Judgements and Best–Worst Method: An Illustration of Value Measure," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(1), pages 1-14, May.
    17. Franke, Katja & Garcia, Joshua Fragoso & Kleinschmitt, Christoph & Sensfuß, Frank, 2024. "Assessing worldwide future potentials of renewable electricity generation: Installable capacity, full load hours and costs," Renewable Energy, Elsevier, vol. 226(C).
    18. Kortelainen, Mika, 2008. "Dynamic environmental performance analysis: A Malmquist index approach," Ecological Economics, Elsevier, vol. 64(4), pages 701-715, February.
    19. Zhang, L.P. & Zhou, P., 2018. "A non-compensatory composite indicator approach to assessing low-carbon performance," European Journal of Operational Research, Elsevier, vol. 270(1), pages 352-361.
    20. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.07573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.