IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.08920.html
   My bibliography  Save this paper

A tale of two tails: 130 years of growth-at-risk

Author

Listed:
  • Martin Gachter
  • Elias Hasler
  • Florian Huber

Abstract

We extend the existing growth-at-risk (GaR) literature by examining a long time period of 130 years in a time-varying parameter regression model. We identify several important insights for policymakers. First, both the level as well as the determinants of GaR vary significantly over time. Second, the stability of upside risks to GDP growth reported in earlier research is specific to the period known as the Great Moderation, with the distribution of risks being more balanced before the 1970s. Third, the distribution of GDP growth has significantly narrowed since the end of the Bretton Woods system. Fourth, financial stress is always linked to higher downside risks, but it does not affect upside risks. Finally, other risk indicators, such as credit growth and house prices, not only drive downside risks, but also contribute to increased upside risks during boom periods. In this context, the paper also adds to the financial cycle literature by completing the picture of drivers (and risks) for both booms and recessions over time.

Suggested Citation

  • Martin Gachter & Elias Hasler & Florian Huber, 2023. "A tale of two tails: 130 years of growth-at-risk," Papers 2302.08920, arXiv.org.
  • Handle: RePEc:arx:papers:2302.08920
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.08920
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Òscar Jordà & Moritz Schularick & Alan M. Taylor, 2017. "Macrofinancial History and the New Business Cycle Facts," NBER Macroeconomics Annual, University of Chicago Press, vol. 31(1), pages 213-263.
    2. Suarez, Javier, 2022. "Growth-at-risk and macroprudential policy design," Journal of Financial Stability, Elsevier, vol. 60(C).
    3. Atif Mian & Amir Sufi & Emil Verner, 2017. "Household Debt and Business Cycles Worldwide," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1755-1817.
    4. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024. "Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
    5. Atif Mian & Kamalesh Rao & Amir Sufi, 2013. "Household Balance Sheets, Consumption, and the Economic Slump," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(4), pages 1687-1726.
    6. Òscar Jordà & Moritz Schularick & Alan M. Taylor, 2016. "The great mortgaging: housing finance, crises and business cycles," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 31(85), pages 107-152.
    7. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    8. Gabriel Jiménez & Steven Ongena & José-Luis Peydró & Jesús Saurina, 2017. "Macroprudential Policy, Countercyclical Bank Capital Buffers, and Credit Supply: Evidence from the Spanish Dynamic Provisioning Experiments," Journal of Political Economy, University of Chicago Press, vol. 125(6), pages 2126-2177.
    9. Cerutti, Eugenio & Claessens, Stijn & Laeven, Luc, 2017. "The use and effectiveness of macroprudential policies: New evidence," Journal of Financial Stability, Elsevier, vol. 28(C), pages 203-224.
    10. Gary Gorton & Guillermo Ordoñez, 2020. "Good Booms, Bad Booms," Journal of the European Economic Association, European Economic Association, vol. 18(2), pages 618-665.
    11. Claudio Borio, 2014. "The financial cycle and macroeconomics: what have we learned and what are the policy implications?," Chapters, in: Ewald Nowotny & Doris Ritzberger-Grünwald & Peter Backé (ed.), Financial Cycles and the Real Economy, chapter 2, pages 10-35, Edward Elgar Publishing.
    12. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    13. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    14. Pooyan Amir‐Ahmadi & Christian Matthes & Mu‐Chun Wang, 2016. "Drifts and volatilities under measurement error: Assessing monetary policy shocks over the last century," Quantitative Economics, Econometric Society, vol. 7(2), pages 591-611, July.
    15. Aikman, David & Bridges, Jonathan & Hacioglu Hoke, Sinem & O’Neill, Cian & Raja, Akash, 2019. "Credit, capital and crises: a GDP-at-Risk approach," Bank of England working papers 824, Bank of England, revised 18 Oct 2019.
    16. Brownlees, Christian & Souza, André B.M., 2021. "Backtesting global Growth-at-Risk," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 312-330.
    17. Borio, Claudio, 2014. "The financial cycle and macroeconomics: What have we learnt?," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 182-198.
    18. Moritz Schularick & Alan M. Taylor, 2012. "Credit Booms Gone Bust: Monetary Policy, Leverage Cycles, and Financial Crises, 1870-2008," American Economic Review, American Economic Association, vol. 102(2), pages 1029-1061, April.
    19. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    20. Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014. "Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
    21. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022. "Forecasting US Inflation Using Bayesian Nonparametric Models," Papers 2202.13793, arXiv.org.
    22. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    23. Annalisa Cadonna & Sylvia Frühwirth-Schnatter & Peter Knaus, 2020. "Triple the Gamma—A Unifying Shrinkage Prior for Variance and Variable Selection in Sparse State Space and TVP Models," Econometrics, MDPI, vol. 8(2), pages 1-36, May.
    24. Antonello D'Agostino & Paolo Surico, 2012. "A Century of Inflation Forecasts," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1097-1106, November.
    25. Patrick J. Coe & Shaun P. Vahey, 2020. "Financial conditions and the risks to economic growth in the United States since 1875," CAMA Working Papers 2020-36, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristian Andrei Budris & Bogdan Dima, 2024. "Exploring The Fama-French Five Factor Model Within a Time-Varying Parameters Framework," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 16(2), pages 309-357, December.
    2. Gächter, Martin & Hasler, Elias & Scharler, Johann, 2023. "Kicking the can down the road: A historical growth-at-risk perspective," Economics Letters, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95, October –.
    2. Engelbert Stockhammer & Giorgos Gouzoulis & Rob Calvert Jump, 2019. "Debt-driven business cycles in historical perspective: The cases of the USA (1889-2015) and UK (1882-2010)," Working Papers PKWP1907, Post Keynesian Economics Society (PKES).
    3. Mircea Epure & Irina Mihai & Camelia Minoiu & José-Luis Peydró, 2024. "Global Financial Cycle, Household Credit, and Macroprudential Policies," Management Science, INFORMS, vol. 70(11), pages 8096-8115, November.
    4. Epure, Mircea & Mihai, Irina & Minoiu, Camelia & Peydró, José-Luis, 2018. "Household Credit, Global Financial Cycle, and Macroprudential Policies: Credit Register Evidence from an Emerging Country," EconStor Preprints 216800, ZBW - Leibniz Information Centre for Economics.
    5. Moramarco, Graziano, 2024. "Financial-cycle ratios and medium-term predictions of GDP: Evidence from the United States," International Journal of Forecasting, Elsevier, vol. 40(2), pages 777-795.
    6. Maximilian Grimm & Òscar Jordà & Moritz Schularick & Alan M. Taylor, 2023. "Loose Monetary Policy and Financial Instability," Working Paper Series 2023-06, Federal Reserve Bank of San Francisco.
    7. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
    8. Wang, Bo & Xiao, Yang, 2023. "The term effect of financial cycle variables on GDP growth," Journal of International Money and Finance, Elsevier, vol. 139(C).
    9. Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017. "Forecasting Global Equity Indices Using Large Bayesian Vars," Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
    10. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    11. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    12. Herwartz, Helmut & Ochsner, Christian & Rohloff, Hannes, 2020. "The credit composition of global liquidity," University of Göttingen Working Papers in Economics 409, University of Goettingen, Department of Economics.
    13. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    14. Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2023. "Vector autoregression models with skewness and heavy tails," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    15. Viral V. Acharya & Katharina Bergant & Matteo Crosignani & Tim Eisert & Fergal Mccann, 2022. "The Anatomy of the Transmission of Macroprudential Policies," Journal of Finance, American Finance Association, vol. 77(5), pages 2533-2575, October.
    16. David Martinez-Miera & Rafael Repullo, 2019. "Monetary Policy, Macroprudential Policy, and Financial Stability," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 809-832, August.
    17. Björn Richter & Moritz Schularick & Paul Wachtel, 2021. "When to Lean against the Wind," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(1), pages 5-39, February.
    18. Guerrieri, V. & Uhlig, H., 2016. "Housing and Credit Markets," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1427-1496, Elsevier.
    19. Klein, Mathias & Winkler, Roland, 2019. "Austerity, inequality, and private debt overhang," European Journal of Political Economy, Elsevier, vol. 57(C), pages 89-106.
    20. Tamás Kiss & Stepan Mazur & Hoang Nguyen & Pär Österholm, 2023. "Modeling the relation between the US real economy and the corporate bond‐yield spread in Bayesian VARs with non‐Gaussian innovations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 347-368, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.08920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.