IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.12163.html
   My bibliography  Save this paper

Fair congested assignment problem

Author

Listed:
  • Anna Bogomolnaia
  • Herve Moulin

Abstract

We propose a fair and efficient solution for assigning agents to m posts subject to congestion, when agents care about both their post and its congestion. Examples include assigning jobs to busy servers, students to crowded schools or crowded classes, commuters to congested routes, workers to crowded office spaces or to team projects etc... Congestion is anonymous (it only depends on the number n of agents in a given post). A canonical interpretation of ex ante fairness allows each agent to choose m post-specific caps on the congestion they tolerate: these requests are mutually feasible if and only if the sum of the caps is n. For ex post fairness we impose a competitive requirement close to envy freeness: taking the congestion profile as given each agent is assigned to one of her best posts. If a competitive assignment exists, it delivers unique congestion and welfare profiles and is also efficient and ex ante fair. In a fractional (randomised or time sharing) version of our model, a unique competitive congestion profile always exists. It is approximately implemented by a mixture of ex post deterministic assignments: with an approxination factor equal to the largest utility loss from one more unit of congestion, the latter deliver identical welfare profiles and are weakly efficient. Our approach to ex ante fairness generalises to the model where each agent's congestion is weighted. Now the caps on posts depend only upon own weight and total congestion, not on the number of other agents contributing to it. Remarkably in both models these caps are feasible if and only if they give to each agent the right to veto all but (1/m) of their feasible allocations.

Suggested Citation

  • Anna Bogomolnaia & Herve Moulin, 2023. "Fair congested assignment problem," Papers 2301.12163, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2301.12163
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.12163
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Szilvia Papai, 2000. "Strategyproof Assignment by Hierarchical Exchange," Econometrica, Econometric Society, vol. 68(6), pages 1403-1434, November.
    2. Anna Bogomolnaia & Michel Breton & Alexei Savvateev & Shlomo Weber, 2007. "Stability under unanimous consent, free mobility and core," International Journal of Game Theory, Springer;Game Theory Society, vol. 35(2), pages 185-204, January.
    3. Anna Bogomolnaia & Michel Breton & Alexei Savvateev & Shlomo Weber, 2008. "Stability of jurisdiction structures under the equal share and median rules," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 34(3), pages 525-543, March.
    4. Milchtaich, Igal, 1996. "Congestion Games with Player-Specific Payoff Functions," Games and Economic Behavior, Elsevier, vol. 13(1), pages 111-124, March.
    5. Bogomolnaia, Anna & Jackson, Matthew O., 2002. "The Stability of Hedonic Coalition Structures," Games and Economic Behavior, Elsevier, vol. 38(2), pages 201-230, February.
    6. Tayfun Sönmez & Suryapratim Banerjee & Hideo Konishi, 2001. "Core in a simple coalition formation game," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 18(1), pages 135-153.
    7. , Emin & , Bumin & , Ali, 2013. "Effective affirmative action in school choice," Theoretical Economics, Econometric Society, vol. 8(2), May.
    8. Varian, Hal R., 1974. "Equity, envy, and efficiency," Journal of Economic Theory, Elsevier, vol. 9(1), pages 63-91, September.
    9. Bogomolnaia, Anna & Moulin, Herve, 2001. "A New Solution to the Random Assignment Problem," Journal of Economic Theory, Elsevier, vol. 100(2), pages 295-328, October.
    10. Shapley, Lloyd & Scarf, Herbert, 1974. "On cores and indivisibility," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 23-37, March.
    11. Eric Budish, 2011. "The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes," Journal of Political Economy, University of Chicago Press, vol. 119(6), pages 1061-1103.
    12. Konishi, Hideo & Le Breton, Michel & Weber, Shlomo, 1997. "Equilibria in a Model with Partial Rivalry," Journal of Economic Theory, Elsevier, vol. 72(1), pages 225-237, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Breton, Michel & Weber, Shlomo, 2009. "Existence of Pure Strategies Nash Equilibria in Social Interaction Games with Dyadic Externalities," CEPR Discussion Papers 7279, C.E.P.R. Discussion Papers.
    2. Shende, Priyanka & Purohit, Manish, 2023. "Strategy-proof and envy-free mechanisms for house allocation," Journal of Economic Theory, Elsevier, vol. 213(C).
    3. Le Breton, Michel & Shapoval, Alexander & Weber, Shlomo, 2021. "A game-theoretical model of the landscape theory," Journal of Mathematical Economics, Elsevier, vol. 92(C), pages 41-46.
    4. Zhan Wang & Jinpeng Ma & Hongwei Zhang, 2023. "Object-based unawareness: Theory and applications," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 8(1), pages 1-55, December.
    5. Altuntaş, Açelya & Phan, William & Tamura, Yuki, 2023. "Some characterizations of Generalized Top Trading Cycles," Games and Economic Behavior, Elsevier, vol. 141(C), pages 156-181.
    6. Thomson, William, 2011. "Chapter Twenty-One - Fair Allocation Rules," Handbook of Social Choice and Welfare, in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.), Handbook of Social Choice and Welfare, edition 1, volume 2, chapter 21, pages 393-506, Elsevier.
    7. Echenique, Federico & Miralles, Antonio & Zhang, Jun, 2021. "Fairness and efficiency for allocations with participation constraints," Journal of Economic Theory, Elsevier, vol. 195(C).
    8. Le Breton, Michel & Weber, Shlomo, 2004. "Group Formation with Heterogeneous Sets," IDEI Working Papers 288, Institut d'Économie Industrielle (IDEI), Toulouse.
    9. Federico Echenique & Antonio Miralles & Jun Zhang, 2018. "Fairness and Efficiency for Probabilistic Allocations with Endowments," Working Papers 1055, Barcelona School of Economics.
    10. Simina Br^anzei & Fedor Sandomirskiy, 2019. "Algorithms for Competitive Division of Chores," Papers 1907.01766, arXiv.org, revised Jul 2023.
    11. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    12. Di Feng & Bettina Klaus, 2022. "Preference revelation games and strict cores of multiple‐type housing market problems," International Journal of Economic Theory, The International Society for Economic Theory, vol. 18(1), pages 61-76, March.
    13. Sonmez, Tayfun & Utku Unver, M., 2005. "House allocation with existing tenants: an equivalence," Games and Economic Behavior, Elsevier, vol. 52(1), pages 153-185, July.
    14. Roth, Alvin E. & Sonmez, Tayfun & Utku Unver, M., 2005. "Pairwise kidney exchange," Journal of Economic Theory, Elsevier, vol. 125(2), pages 151-188, December.
    15. Marek Pycia & Peter Troyan, 2023. "A Theory of Simplicity in Games and Mechanism Design," Econometrica, Econometric Society, vol. 91(4), pages 1495-1526, July.
    16. Doğan, Battal & Klaus, Bettina, 2018. "Object allocation via immediate-acceptance: Characterizations and an affirmative action application," Journal of Mathematical Economics, Elsevier, vol. 79(C), pages 140-156.
    17. Monte, Daniel & Tumennasan, Norovsambuu, 2015. "Centralized allocation in multiple markets," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 74-85.
    18. Ortega, Josué, 2020. "Multi-unit assignment under dichotomous preferences," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 15-24.
    19. Alcalde, Jose & Revilla, Pablo, 2004. "Researching with whom? Stability and manipulation," Journal of Mathematical Economics, Elsevier, vol. 40(8), pages 869-887, December.
    20. Andrew McLennan & Shino Takayama & Yuki Tamura, 2024. "An Efficient, Computationally Tractable School Choice Mechanism," Discussion Papers Series 668, School of Economics, University of Queensland, Australia.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.12163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.