IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2212.01591.html
   My bibliography  Save this paper

Weak error estimates for rough volatility models

Author

Listed:
  • Peter K. Friz
  • William Salkeld
  • Thomas Wagenhofer

Abstract

We consider a class of stochastic processes with rough stochastic volatility, examples of which include the rough Bergomi and rough Stein-Stein model, that have gained considerable importance in quantitative finance. A basic question for such (non-Markovian) models concerns efficient numerical schemes. While strong rates are well understood (order $H$), we tackle here the intricate question of weak rates. Our main result asserts that the weak rate, for a reasonably large class of test function, is essentially of order $\min \{ 3H+\tfrac12, 1 \}$ where $H \in (0,1/2]$ is the Hurst parameter of the fractional Brownian motion that underlies the rough volatility process. Interestingly, the phase transition at $H=1/6$ is related to the correlation between the two driving factors, and thus gives additional meaning to a quantity already of central importance in stochastic volatility modelling.Our results are complemented by a lower bound which show that the obtained weak rate is indeed optimal.

Suggested Citation

  • Peter K. Friz & William Salkeld & Thomas Wagenhofer, 2022. "Weak error estimates for rough volatility models," Papers 2212.01591, arXiv.org, revised Aug 2024.
  • Handle: RePEc:arx:papers:2212.01591
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2212.01591
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    2. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    3. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    4. Masaaki Fukasawa, 2021. "Volatility has to be rough," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 1-8, January.
    5. Christian Bayer & Masaaki Fukasawa & Shonosuke Nakahara, 2022. "On the weak convergence rate in the discretization of rough volatility models," Papers 2203.02943, arXiv.org.
    6. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    8. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02946146, HAL.
    9. Eduardo Abi Jaber, 2020. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Papers 2009.10972, arXiv.org, revised May 2022.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ofelia Bonesini & Antoine Jacquier & Alexandre Pannier, 2023. "Rough volatility, path-dependent PDEs and weak rates of convergence," Papers 2304.03042, arXiv.org, revised Jan 2025.
    2. Ofelia Bonesini & Giorgia Callegaro & Martino Grasselli & Gilles Pag`es, 2023. "From elephant to goldfish (and back): memory in stochastic Volterra processes," Papers 2306.02708, arXiv.org, revised Jan 2025.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Abi Jaber & Nathan De Carvalho, 2023. "Reconciling rough volatility with jumps," Papers 2303.07222, arXiv.org, revised Sep 2024.
    2. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org, revised Dec 2024.
    3. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Working Papers hal-03902513, HAL.
    4. Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Minimax Theory," Papers 2210.01214, arXiv.org, revised Feb 2024.
    5. Eduardo Abi Jaber & Eyal Neuman & Moritz Vo{ss}, 2023. "Equilibrium in Functional Stochastic Games with Mean-Field Interaction," Papers 2306.05433, arXiv.org, revised Feb 2024.
    6. Eduardo Abi Jaber & Eyal Neuman & Moritz Voss, 2023. "Equilibrium in Functional Stochastic Games with Mean-Field Interaction," Working Papers hal-04119787, HAL.
    7. Luca Galimberti & Anastasis Kratsios & Giulia Livieri, 2022. "Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis," Papers 2210.13300, arXiv.org, revised May 2023.
    8. Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Apr 2024.
    9. Eduardo Abi Jaber & Eyal Neuman, 2022. "Optimal Liquidation with Signals: the General Propagator Case," Working Papers hal-03835948, HAL.
    10. Eduardo Abi Jaber & Eyal Neuman, 2022. "Optimal Liquidation with Signals: the General Propagator Case," Papers 2211.00447, arXiv.org.
    11. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    12. Paul Gassiat, 2022. "Weak error rates of numerical schemes for rough volatility," Papers 2203.09298, arXiv.org, revised Feb 2023.
    13. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    14. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    15. Ofelia Bonesini & Antoine Jacquier & Alexandre Pannier, 2023. "Rough volatility, path-dependent PDEs and weak rates of convergence," Papers 2304.03042, arXiv.org, revised Jan 2025.
    16. Ofelia Bonesini & Giorgia Callegaro & Antoine Jacquier, 2021. "Functional quantization of rough volatility and applications to volatility derivatives," Papers 2104.04233, arXiv.org, revised Mar 2024.
    17. Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Central limit theorems," Papers 2210.01216, arXiv.org, revised Jun 2024.
    18. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    19. Ofelia Bonesini & Giorgia Callegaro & Martino Grasselli & Gilles Pag`es, 2023. "From elephant to goldfish (and back): memory in stochastic Volterra processes," Papers 2306.02708, arXiv.org, revised Jan 2025.
    20. Eduardo Abi Jaber & Louis-Amand G'erard, 2024. "Signature volatility models: pricing and hedging with Fourier," Papers 2402.01820, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2212.01591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.