IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2203.09298.html
   My bibliography  Save this paper

Weak error rates of numerical schemes for rough volatility

Author

Listed:
  • Paul Gassiat

Abstract

Simulation of rough volatility models involves discretization of stochastic integrals where the integrand is a function of a (correlated) fractional Brownian motion of Hurst index $H \in (0,1/2)$. We obtain results on the rate of convergence for the weak error of such approximations, in the special cases when either the integrand is the fBm itself, or the test function is cubic. Our result states that the convergence is of order $(3H+ \frac{1}{2}) \wedge 1$ for exact left-point discretization, and of order $H+\frac{1}{2}$ for the hybrid scheme with well-chosen weights.

Suggested Citation

  • Paul Gassiat, 2022. "Weak error rates of numerical schemes for rough volatility," Papers 2203.09298, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2203.09298
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2203.09298
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Jusselin & Mathieu Rosenbaum, 2020. "No‐arbitrage implies power‐law market impact and rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1309-1336, October.
    2. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    3. Masaaki Fukasawa & Asuto Hirano, 2021. "Refinement by reducing and reusing random numbers of the Hybrid scheme for Brownian semistationary processes," Quantitative Finance, Taylor & Francis Journals, vol. 21(7), pages 1127-1146, July.
    4. Marc Romano & Nizar Touzi, 1997. "Contingent Claims and Market Completeness in a Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 399-412, October.
    5. Elisa Alòs & Jorge León & Josep Vives, 2007. "On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility," Finance and Stochastics, Springer, vol. 11(4), pages 571-589, October.
    6. Christian Bayer & Masaaki Fukasawa & Shonosuke Nakahara, 2022. "On the weak convergence rate in the discretization of rough volatility models," Papers 2203.02943, arXiv.org.
    7. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    8. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
    9. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," Papers 1507.03004, arXiv.org, revised May 2017.
    10. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Hybrid scheme for Brownian semistationary processes," Finance and Stochastics, Springer, vol. 21(4), pages 931-965, October.
    11. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ofelia Bonesini & Antoine Jacquier & Alexandre Pannier, 2023. "Rough volatility, path-dependent PDEs and weak rates of convergence," Papers 2304.03042, arXiv.org.
    2. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    3. Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Minimax Theory," Papers 2210.01214, arXiv.org, revised Feb 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    2. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    3. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    4. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
    5. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2018. "Hierarchical adaptive sparse grids and quasi Monte Carlo for option pricing under the rough Bergomi model," Papers 1812.08533, arXiv.org, revised Jan 2020.
    6. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    7. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    8. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    9. Ofelia Bonesini & Giorgia Callegaro & Antoine Jacquier, 2021. "Functional quantization of rough volatility and applications to volatility derivatives," Papers 2104.04233, arXiv.org, revised Mar 2024.
    10. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    11. Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    12. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    13. Christian Bayer & Benjamin Stemper, 2018. "Deep calibration of rough stochastic volatility models," Papers 1810.03399, arXiv.org.
    14. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2018. "Precise asymptotics: robust stochastic volatility models," Papers 1811.00267, arXiv.org, revised Nov 2020.
    15. Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
    16. Ofelia Bonesini & Antoine Jacquier & Alexandre Pannier, 2023. "Rough volatility, path-dependent PDEs and weak rates of convergence," Papers 2304.03042, arXiv.org.
    17. Huy N. Chau & Duy Nguyen & Thai Nguyen, 2024. "On short-time behavior of implied volatility in a market model with indexes," Papers 2402.16509, arXiv.org, revised Apr 2024.
    18. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2019. "Deep Learning Volatility," Papers 1901.09647, arXiv.org, revised Aug 2019.
    19. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
    20. Christian Bayer & Jinniao Qiu & Yao Yao, 2020. "Pricing Options Under Rough Volatility with Backward SPDEs," Papers 2008.01241, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2203.09298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.