IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.10953.html
   My bibliography  Save this paper

Option pricing under path-dependent stock models

Author

Listed:
  • Kiseop Lee
  • Seongje Lim
  • Hyungbin Park

Abstract

This paper studies how to price and hedge options under stock models given as a path-dependent SDE solution. When the path-dependent SDE coefficients have Fr\'{e}chet derivatives, an option price is differentiable with respect to time and the path, and is given as a solution to the path-dependent PDE. This can be regarded as a path-dependent version of the Feynman-Kac formula. As a byproduct, we obtain the differentiability of path-dependent SDE solutions and the SDE representation of their derivatives. In addition, we provide formulas for Greeks with path-dependent coefficient perturbations. A stock model having coefficients with time integration forms of paths is covered as an example.

Suggested Citation

  • Kiseop Lee & Seongje Lim & Hyungbin Park, 2022. "Option pricing under path-dependent stock models," Papers 2211.10953, arXiv.org, revised Aug 2023.
  • Handle: RePEc:arx:papers:2211.10953
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.10953
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guillaume Bernis & Emmanuel Gobet & Arturo Kohatsu‐Higa, 2003. "Monte Carlo Evaluation of Greeks for Multidimensional Barrier and Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 99-113, January.
    2. Marco Avellaneda & Roberta Gamba, 2002. "Conquering The Greeks In Monte Carlo: Efficient Calculation Of The Market Sensitivities And Hedge-Ratios Of Financial Assets By Direct Numerical Simulation," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume III), chapter 16, pages 336-351, World Scientific Publishing Co. Pte. Ltd..
    3. Bruno Dupire, 2019. "Functional Itô calculus," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 721-729, May.
    4. Ballestra, Luca Vincenzo & Pacelli, Graziella & Zirilli, Francesco, 2007. "A numerical method to price exotic path-dependent options on an underlying described by the Heston stochastic volatility model," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3420-3437, November.
    5. Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
    6. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    7. Jazaerli, Samy & F. Saporito, Yuri, 2017. "Functional Itô calculus, path-dependence and the computation of Greeks," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3997-4028.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Elvira Mancino & Simona Sanfelici, 2020. "Nonparametric Malliavin–Monte Carlo Computation of Hedging Greeks," Risks, MDPI, vol. 8(4), pages 1-17, November.
    2. Muroi, Yoshifumi & Suda, Shintaro, 2017. "Computation of Greeks in jump-diffusion models using discrete Malliavin calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 140(C), pages 69-93.
    3. Georgii Riabov & Aleh Tsyvinski, 2021. "Policy with stochastic hysteresis," Papers 2104.10225, arXiv.org.
    4. Yuri F. Saporito, 2020. "Pricing Path-Dependent Derivatives under Multiscale Stochastic Volatility Models: a Malliavin Representation," Papers 2005.04297, arXiv.org.
    5. Nakatsu, Tomonori, 2023. "On density functions related to discrete time maximum of some one-dimensional diffusion processes," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    6. Tomonori Nakatsu, 2017. "An Integration by Parts Type Formula for Stopping Times and its Application," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 751-773, September.
    7. Detemple, Jerome & Rindisbacher, Marcel, 2007. "Monte Carlo methods for derivatives of options with discontinuous payoffs," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3393-3417, April.
    8. Hideharu Funahashi & Masaaki Kijima, 2016. "Analytical pricing of single barrier options under local volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 867-886, June.
    9. Zhou Fang, 2023. "Continuous-Time Path-Dependent Exploratory Mean-Variance Portfolio Construction," Papers 2303.02298, arXiv.org.
    10. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    11. Wen Su, 2021. "Default Distances Based on the CEV-KMV Model," Papers 2107.10226, arXiv.org, revised May 2022.
    12. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    13. Richard Jordan & Charles Tier, 2016. "Asymptotic Approximations For Pricing Derivatives Under Mean-Reverting Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-31, August.
    14. Vygintas Gontis & Aleksejus Kononovicius & Stefan Reimann, 2012. "The class of nonlinear stochastic models as a background for the bursty behavior in financial markets," Papers 1201.3083, arXiv.org, revised May 2012.
    15. Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
    16. Dell'Era Mario, M.D., 2008. "Pricing of the European Options by Spectral Theory," MPRA Paper 17429, University Library of Munich, Germany.
    17. repec:pri:metric:wp033_2012_hansen_borovicka_hendricks_scheinkman_risk%20price%20dynamics. is not listed on IDEAS
    18. Jakša Cvitanić & Jin Ma & Jianfeng Zhang, 2003. "Efficient Computation of Hedging Portfolios for Options with Discontinuous Payoffs," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 135-151, January.
    19. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    20. Arturo Kohatsu-Higa & Miquel Montero, 2001. "An application of Malliavin Calculus to Finance," Papers cond-mat/0111563, arXiv.org.
    21. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.10953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.