IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2005.04297.html
   My bibliography  Save this paper

Pricing Path-Dependent Derivatives under Multiscale Stochastic Volatility Models: a Malliavin Representation

Author

Listed:
  • Yuri F. Saporito

Abstract

In this paper we derive a efficient Monte Carlo approximation for the price of path-dependent derivatives under the multiscale stochastic volatility models of Fouque \textit{et al}. Using the formulation of this pricing problem under the functional It\^o calculus framework and making use of Greek formulas from Malliavin calculus, we derive a representation for the first-order approximation of the price of path-dependent derivatives in the form $\mathbb{E}[\mbox{payoff} \times \mbox{weight}]$. The weight is known in closed form and depends only on the group market parameters arising from the calibration of the multiscale stochastic volatility to the market's implied volatility. Moreover, only simulations of the Black-Scholes model is required. We exemplify the method for a couple path-dependent derivatives.

Suggested Citation

  • Yuri F. Saporito, 2020. "Pricing Path-Dependent Derivatives under Multiscale Stochastic Volatility Models: a Malliavin Representation," Papers 2005.04297, arXiv.org.
  • Handle: RePEc:arx:papers:2005.04297
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2005.04297
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584, October.
    2. Davis, Mark H.A. & Johansson, Martin P., 2006. "Malliavin Monte Carlo Greeks for jump diffusions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 101-129, January.
    3. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux, 2001. "Applications of Malliavin calculus to Monte-Carlo methods in finance. II," Finance and Stochastics, Springer, vol. 5(2), pages 201-236.
    4. Yuri F. Saporito, 2018. "First-Order Asymptotics Of Path-Dependent Derivatives In Multiscale Stochastic Volatility Environment," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(03), pages 1-22, May.
    5. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    6. Jazaerli, Samy & F. Saporito, Yuri, 2017. "Functional Itô calculus, path-dependence and the computation of Greeks," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3997-4028.
    7. Yuri F. Saporito, 2017. "First-Order Asymptotics of Path-Dependent Derivatives in Multiscale Stochastic Volatility Environment," Papers 1712.07320, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anselm Hudde & Ludger Rüschendorf, 2023. "European and Asian Greeks for Exponential Lévy Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    2. Cont, Rama & Lu, Yi, 2016. "Weak approximation of martingale representations," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 857-882.
    3. Chen, Nan & Glasserman, Paul, 2007. "Malliavin Greeks without Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1689-1723, November.
    4. Ofelia Bonesini & Antoine Jacquier & Chloe Lacombe, 2020. "A theoretical analysis of Guyon's toy volatility model," Papers 2001.05248, arXiv.org, revised Nov 2022.
    5. Bilgi Yilmaz, 2018. "Computation of option greeks under hybrid stochastic volatility models via Malliavin calculus," Papers 1806.06061, arXiv.org.
    6. Maria Elvira Mancino & Simona Sanfelici, 2020. "Nonparametric Malliavin–Monte Carlo Computation of Hedging Greeks," Risks, MDPI, vol. 8(4), pages 1-17, November.
    7. Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
    8. Jakša Cvitanić & Jin Ma & Jianfeng Zhang, 2003. "Efficient Computation of Hedging Portfolios for Options with Discontinuous Payoffs," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 135-151, January.
    9. Arturo Kohatsu-Higa & Miquel Montero, 2001. "An application of Malliavin Calculus to Finance," Papers cond-mat/0111563, arXiv.org.
    10. Jérôme Detemple & René Garcia & Marcel Rindisbacher, 2005. "Asymptotic Properties of Monte Carlo Estimators of Derivatives," Management Science, INFORMS, vol. 51(11), pages 1657-1675, November.
    11. El-Khatib, Youssef & Abdulnasser, Hatemi-J, 2011. "On the calculation of price sensitivities with jump-diffusion structure," MPRA Paper 30596, University Library of Munich, Germany.
    12. Anselm Hudde & Ludger Rüschendorf, 2023. "European and Asian Greeks for Exponential Lévy Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    13. Coffie, Emmanuel & Duedahl, Sindre & Proske, Frank, 2023. "Sensitivity analysis with respect to a stochastic stock price model with rough volatility via a Bismut–Elworthy–Li formula for singular SDEs," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 156-195.
    14. Fard, Farzad Alavi & Siu, Tak Kuen, 2013. "Pricing participating products with Markov-modulated jump–diffusion process: An efficient numerical PIDE approach," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 712-721.
    15. Ma, Jin & Zhang, Jianfeng, 2005. "Representations and regularities for solutions to BSDEs with reflections," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 539-569, April.
    16. Hyungbin Park, 2018. "Sensitivity analysis of long-term cash flows," Finance and Stochastics, Springer, vol. 22(4), pages 773-825, October.
    17. Lars Hansen & José Scheinkman, 2012. "Pricing growth-rate risk," Finance and Stochastics, Springer, vol. 16(1), pages 1-15, January.
    18. Atsushi Takeuchi, 2010. "Bismut–Elworthy–Li-Type Formulae for Stochastic Differential Equations with Jumps," Journal of Theoretical Probability, Springer, vol. 23(2), pages 576-604, June.
    19. Bally Vlad & Caramellino Lucia & Zanette Antonino, 2005. "Pricing and hedging American options by Monte Carlo methods using a Malliavin calculus approach," Monte Carlo Methods and Applications, De Gruyter, vol. 11(2), pages 97-133, June.
    20. Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.04297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.