IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.08785.html
   My bibliography  Save this paper

Welfare estimations from imagery. A test of domain experts ability to rate poverty from visual inspection of satellite imagery

Author

Listed:
  • Wahab Ibrahim
  • Ola Hall

Abstract

The present study uses domain experts to estimate welfare levels and indicators from high-resolution satellite imagery. We use the wealth quintiles from the 2015 Tanzania DHS dataset as ground truth data. We analyse the performance of the visual estimation of relative wealth at the cluster level and compare these with wealth rankings from the DHS survey of 2015 for that country using correlations, ordinal regressions and multinomial logistic regressions. Of the 608 clusters, 115 received the same ratings from human experts and the independent DHS rankings. For 59 percent of the clusters, experts ratings were slightly lower. On the one hand, significant positive predictors of wealth are the presence of modern roofs and wider roads. For instance, the log odds of receiving a rating in a higher quintile on the wealth rankings is 0.917 points higher on average for clusters with buildings with slate or tile roofing compared to those without. On the other hand, significant negative predictors included poor road coverage, low to medium greenery coverage, and low to medium building density. Other key predictors from the multinomial regression model include settlement structure and farm sizes. These findings are significant to the extent that these correlates of wealth and poverty are visually readable from satellite imagery and can be used to train machine learning models in poverty predictions. Using these features for training will contribute to more transparent ML models and, consequently, explainable AI.

Suggested Citation

  • Wahab Ibrahim & Ola Hall, 2022. "Welfare estimations from imagery. A test of domain experts ability to rate poverty from visual inspection of satellite imagery," Papers 2210.08785, arXiv.org.
  • Handle: RePEc:arx:papers:2210.08785
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.08785
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Keola, Souknilanh & Andersson, Magnus & Hall, Ola, 2015. "Monitoring Economic Development from Space: Using Nighttime Light and Land Cover Data to Measure Economic Growth," World Development, Elsevier, vol. 66(C), pages 322-334.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corral, Leonardo R. & Schling, Maja, 2017. "The impact of shoreline stabilization on economic growth in small island developing states," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 210-228.
    2. Hayakawa, Kazunobu & Keola, Souknilanh & Silaphet, Korrakoun & Yamanouchi, Kenta, 2022. "Estimating the impacts of international bridges on foreign firm locations: a machine learning approach," IDE Discussion Papers 847, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    3. Beyer, Robert C.M. & Franco-Bedoya, Sebastian & Galdo, Virgilio, 2021. "Examining the economic impact of COVID-19 in India through daily electricity consumption and nighttime light intensity," World Development, Elsevier, vol. 140(C).
    4. Omoniyi Alimi & Geua Boe-Gibson & John Gibson, 2022. "Noisy Night Lights Data: Effects on Research Findings for Developing Countries," Working Papers in Economics 22/12, University of Waikato.
    5. Nicolene Hamman & Andrew Phiri, 2022. "Using Nighttime Luminosity as a Proxy for Economic Growth in Africa: Is It a Bright Idea?," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 20(2 (Summer), pages 139-165.
    6. Dickinson, Jeffrey, 2020. "Planes, Trains, and Automobiles: What Drives Human-Made Light?," MPRA Paper 103504, University Library of Munich, Germany.
    7. Beyer, Robert & Yao, Jiaxiong & Hu, Yingyao, 2022. "Measuring Quarterly Economic Growth from Outer Space," VfS Annual Conference 2022 (Basel): Big Data in Economics 264007, Verein für Socialpolitik / German Economic Association.
    8. Souknilanh Keola & Kazunobu Hayakawa, 2021. "Do Lockdown Policies Reduce Economic and Social Activities? Evidence from NO2 Emissions," The Developing Economies, Institute of Developing Economies, vol. 59(2), pages 178-205, June.
    9. Gibson, John & Olivia, Susan & Boe-Gibson, Geua & Li, Chao, 2021. "Which night lights data should we use in economics, and where?," Journal of Development Economics, Elsevier, vol. 149(C).
    10. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2018. "Shedding Light on the Spatial Diffusion of Disasters," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181556, Verein für Socialpolitik / German Economic Association.
    11. Lessmann, Christian & Seidel, André, 2017. "Regional inequality, convergence, and its determinants – A view from outer space," European Economic Review, Elsevier, vol. 92(C), pages 110-132.
    12. GIBSON, John & ZHANG, Xiaoxuan & PARK, Albert & YI, Jiang & XI, Li, 2024. "Remotely measuring rural economic activity and poverty : Do we just need better sensors?," CEI Working Paper Series 2023-08, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
    13. John Gibson & Susan Olivia & Geua Boe‐Gibson, 2020. "Night Lights In Economics: Sources And Uses," Journal of Economic Surveys, Wiley Blackwell, vol. 34(5), pages 955-980, December.
    14. Zhou, You & Zhang, Lingzhu & JF Chiaradia, Alain, 2022. "Estimating wider economic impacts of transport infrastructure Investment: Evidence from accessibility disparity in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 220-235.
    15. repec:lic:licosd:41920 is not listed on IDEAS
    16. Büttner, Nicolas & Grimm, Michael & Günther, Isabel & Harttgen, Kenneth & Klasen, Stephan, 2022. "The fertility transition in Sub-Saharan Africa: The role of structural change," Passauer Diskussionspapiere, Volkswirtschaftliche Reihe V-90-22, University of Passau, Faculty of Business and Economics.
    17. Lin Li & Kaixu Zhao & Xinyu Wang & Sidong Zhao & Xingguang Liu & Weiwei Li, 2022. "Spatio-Temporal Evolution and Driving Mechanism of Urbanization in Small Cities: Case Study from Guangxi," Land, MDPI, vol. 11(3), pages 1-34, March.
    18. Ola Hall & Francis Dompae & Ibrahim Wahab & Fred Mawunyo Dzanku, 2023. "A review of machine learning and satellite imagery for poverty prediction: Implications for development research and applications," Journal of International Development, John Wiley & Sons, Ltd., vol. 35(7), pages 1753-1768, October.
    19. Ogunlesi, Ayodeji & Bokana, Koye & Okoye, Chidozie & Loy, Jens-Peter, 2018. "Agricultural Productivity and Food Supply Stability in Sub-Saharan Africa: LSDV and SYS-GMM Approach," MPRA Paper 90204, University Library of Munich, Germany.
    20. Phoebe W. Ishak & Pierre-Guillaume Méon, 2020. "A resource-rich neighbor is a misfortune: The spatial distribution of the resource curse in Brazil," Working Papers CEB 20-001, ULB -- Universite Libre de Bruxelles.
    21. Jasiński, Tomasz, 2019. "Modeling electricity consumption using nighttime light images and artificial neural networks," Energy, Elsevier, vol. 179(C), pages 831-842.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.08785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.