IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i7p739-d526062.html
   My bibliography  Save this article

A Generalized Weighted Monte Carlo Calibration Method for Derivative Pricing

Author

Listed:
  • Hilmar Gudmundsson

    (Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281-S9, B-9000 Ghent, Belgium
    Verna, Ármúli 13, 108 Reykjavík, Iceland)

  • David Vyncke

    (Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281-S9, B-9000 Ghent, Belgium)

Abstract

The weighted Monte Carlo method is an elegant technique to calibrate asset pricing models to market prices. Unfortunately, the accuracy can drop quite quickly for out-of-sample options as one moves away from the strike range and maturity range of the benchmark options. To improve the accuracy, we propose a generalized version of the weighted Monte Carlo calibration method with two distinguishing features. First, we use a probability distortion scheme to produce a non-uniform prior distribution for the simulated paths. Second, we assign multiple weights per path to fit with the different maturities present in the set of benchmark options. Our tests on S&P500 options data show that the new calibration method proposed here produces a significantly better out-of-sample fit than the original method for two commonly used asset pricing models.

Suggested Citation

  • Hilmar Gudmundsson & David Vyncke, 2021. "A Generalized Weighted Monte Carlo Calibration Method for Derivative Pricing," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:739-:d:526062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/7/739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/7/739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jürgen Vandenbroucke, 2015. "A Cumulative Prospect View on Portfolios that Hold Structured Products," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 16(4), pages 297-310, October.
    2. Polkovnichenko, Valery & Zhao, Feng, 2013. "Probability weighting functions implied in options prices," Journal of Financial Economics, Elsevier, vol. 107(3), pages 580-609.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
    5. Fox, Craig R & Rogers, Brett A & Tversky, Amos, 1996. "Options Traders Exhibit Subadditive Decision Weights," Journal of Risk and Uncertainty, Springer, vol. 13(1), pages 5-17, July.
    6. Ludvigson, Sydney C., 2013. "Advances in Consumption-Based Asset Pricing: Empirical Tests," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 799-906, Elsevier.
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    8. Manfred Gilli & Enrico Schumann, 2010. "Calibrating Option Pricing Models with Heuristics," Working Papers 030, COMISEF.
    9. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    10. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    11. Marco Avellaneda & Robert Buff & Craig Friedman & Nicolas Grandechamp & Lukasz Kruk & Joshua Newman, 2001. "Weighted Monte Carlo: A New Technique For Calibrating Asset-Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 91-119.
    12. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    15. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    16. Nicholas Barberis, 2013. "The Psychology of Tail Events: Progress and Challenges," American Economic Review, American Economic Association, vol. 103(3), pages 611-616, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    2. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    3. Hsuan-Chu Lin & Ren-Raw Chen & Oded Palmon, 2016. "Explaining the volatility smile: non-parametric versus parametric option models," Review of Quantitative Finance and Accounting, Springer, vol. 46(4), pages 907-935, May.
    4. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    5. Charles-Cadogan, G., 2021. "Market Instability, Investor Sentiment, And Probability Judgment Error in Index Option Prices," CRETA Online Discussion Paper Series 71, Centre for Research in Economic Theory and its Applications CRETA.
    6. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    7. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    8. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    9. Bernd Engelmann & Matthias Fengler & Morten Nalholm & Peter Schwendner, 2006. "Static versus dynamic hedges: an empirical comparison for barrier options," Review of Derivatives Research, Springer, vol. 9(3), pages 239-264, November.
    10. Timothy Sharp & Steven Li & David Allen, 2010. "Empirical performance of affine option pricing models: evidence from the Australian index options market," Applied Financial Economics, Taylor & Francis Journals, vol. 20(6), pages 501-514.
    11. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    12. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    13. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    14. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    15. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    16. Christian Wolff & Thorsten Lehnert & Cokki Versluis, 2009. "A Cumulative Prospect Theory Approach to Option Pricing," LSF Research Working Paper Series 09-03, Luxembourg School of Finance, University of Luxembourg.
    17. Nils Grevenbrock & Max Groneck & Alexander Ludwig & Alexander Zimper, 2021. "Cognition, Optimism, And The Formation Of Age‐Dependent Survival Beliefs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 887-918, May.
    18. Gurdip Bakshi & Charles Cao & Zhaodong (Ken) Zhong, 2021. "Assessing models of individual equity option prices," Review of Quantitative Finance and Accounting, Springer, vol. 57(1), pages 1-28, July.
    19. repec:ehu:biltok:5903 is not listed on IDEAS
    20. Y. Wang & H. Yin & L. Qi, 2004. "No-Arbitrage Interpolation of the Option Price Function and Its Reformulation," Journal of Optimization Theory and Applications, Springer, vol. 120(3), pages 627-649, March.
    21. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:739-:d:526062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.