IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.03135.html
   My bibliography  Save this paper

Modeling Price Elasticity for Occupancy Prediction in Hotel Dynamic Pricing

Author

Listed:
  • Fanwei Zhu
  • Wendong Xiao
  • Yao Yu
  • Ziyi Wang
  • Zulong Chen
  • Quan Lu
  • Zemin Liu
  • Minghui Wu
  • Shenghua Ni

Abstract

Demand estimation plays an important role in dynamic pricing where the optimal price can be obtained via maximizing the revenue based on the demand curve. In online hotel booking platform, the demand or occupancy of rooms varies across room-types and changes over time, and thus it is challenging to get an accurate occupancy estimate. In this paper, we propose a novel hotel demand function that explicitly models the price elasticity of demand for occupancy prediction, and design a price elasticity prediction model to learn the dynamic price elasticity coefficient from a variety of affecting factors. Our model is composed of carefully designed elasticity learning modules to alleviate the endogeneity problem, and trained in a multi-task framework to tackle the data sparseness. We conduct comprehensive experiments on real-world datasets and validate the superiority of our method over the state-of-the-art baselines for both occupancy prediction and dynamic pricing.

Suggested Citation

  • Fanwei Zhu & Wendong Xiao & Yao Yu & Ziyi Wang & Zulong Chen & Quan Lu & Zemin Liu & Minghui Wu & Shenghua Ni, 2022. "Modeling Price Elasticity for Occupancy Prediction in Hotel Dynamic Pricing," Papers 2208.03135, arXiv.org, revised Aug 2022.
  • Handle: RePEc:arx:papers:2208.03135
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.03135
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chris Tofallis, 2015. "A better measure of relative prediction accuracy for model selection and model estimation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(8), pages 1352-1362, August.
    2. Weatherford, Larry R. & Kimes, Sheryl E., 2003. "A comparison of forecasting methods for hotel revenue management," International Journal of Forecasting, Elsevier, vol. 19(3), pages 401-415.
    3. Chris Tofallis, 2015. "A better measure of relative prediction accuracy for model selection and model estimation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(3), pages 524-524, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larissa Koupriouchina & Jean-Pierre van der Rest & Zvi Schwartz, 2023. "Judgmental Adjustments of Algorithmic Hotel Occupancy Forecasts: Does User Override Frequency Impact Accuracy at Different Time Horizons?," Tourism Economics, , vol. 29(8), pages 2143-2164, December.
    2. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    3. Rahman A. Prasojo & Karunika Diwyacitta & Suwarno & Harry Gumilang, 2017. "Transformer Paper Expected Life Estimation Using ANFIS Based on Oil Characteristics and Dissolved Gases (Case Study: Indonesian Transformers)," Energies, MDPI, vol. 10(8), pages 1-18, August.
    4. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    5. Kayode Ayankoya & Andre P. Calitz & Jean H. Greyling, 2016. "Real-Time Grain Commodities Price Predictions in South Africa: A Big Data and Neural Networks Approach," Agrekon, Taylor & Francis Journals, vol. 55(4), pages 483-508, October.
    6. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    7. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    8. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    9. Marijana Zekić-Sušac & Marinela Knežević & Rudolf Scitovski, 2021. "Modeling the cost of energy in public sector buildings by linear regression and deep learning," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 307-322, March.
    10. Guo, Wei & Liu, Qingfu & Luo, Zhidan & Tse, Yiuman, 2022. "Forecasts for international financial series with VMD algorithms," Journal of Asian Economics, Elsevier, vol. 80(C).
    11. Michael S. O’Donnell & Daniel J. Manier, 2022. "Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems," Land, MDPI, vol. 11(10), pages 1-37, October.
    12. Man Sing Wong & Tingneng Wang & Hung Chak Ho & Coco Y. T. Kwok & Keru Lu & Sawaid Abbas, 2018. "Towards a Smart City: Development and Application of an Improved Integrated Environmental Monitoring System," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
    13. Zekić-Sušac Marijana & Scitovski Rudolf & Has Adela, 2018. "Cluster analysis and artificial neural networks in predicting energy efficiency of public buildings as a cost-saving approach," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 4(2), pages 57-66, November.
    14. Paolo Berta & Paolo Paruolo & Stefano Verzillo & Pietro Giorgio Lovaglio, 2020. "A bivariate prediction approach for adapting the health care system response to the spread of COVID-19," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    15. Shivaram Subramanian & Pavithra Harsha, 2021. "Demand Modeling in the Presence of Unobserved Lost Sales," Management Science, INFORMS, vol. 67(6), pages 3803-3833, June.
    16. Agnese Maria Di Brisco & Enea Giuseppe Bongiorno & Aldo Goia & Sonia Migliorati, 2023. "Bayesian flexible beta regression model with functional covariate," Computational Statistics, Springer, vol. 38(2), pages 623-645, June.
    17. Ming Yin & Feiya Lu & Xingxuan Zhuo & Wangzi Yao & Jialong Liu & Jijiao Jiang, 2024. "Prediction of daily tourism volume based on maximum correlation minimum redundancy feature selection and long short‐term memory network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 344-365, March.
    18. Guo, Lin & Zhang, Ben, 2019. "Mining structural influence to analyze relationships in social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 301-309.
    19. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2022. "Accuracy indicators for evaluating retrospective performance of energy system models," Applied Energy, Elsevier, vol. 325(C).
    20. Warwick Smith & Anca M. Hanea & Mark A. Burgman, 2022. "Can Groups Improve Expert Economic and Financial Forecasts?," Forecasting, MDPI, vol. 4(3), pages 1-18, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.03135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.