IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2207.03221.html
   My bibliography  Save this paper

Clustering of Excursion Sets in Financial Market

Author

Listed:
  • M. Shadmangohar
  • S. M. S. Movahed

Abstract

Relying on the excursion set theory, we compute the number density of local extrema and crossing statistics versus the threshold for the stock market indices. Comparing the number density of excursion sets calculated numerically with the theoretical prediction for the Gaussian process confirmed that all data sets used in this paper have a surplus (almost lack) value of local extrema (up-crossing) density at low (high) thresholds almost around the mean value implying universal properties for stock indices. We estimate the clustering of geometrical measures based on the excess probability of finding the pairs of excursion sets, which clarify well statistical coherency between markets located in the same geographical region. The cross-correlation of excursion sets between various markets is also considered to construct the matrix of agglomerative hierarchical clustering. Our results demonstrate that the peak statistics is more capable of capturing blocks. Incorporating the partitioning approach, we implement the Singular Value Decomposition on the matrix containing the maximum value of unweighted Two-Point Correlation Function of peaks and up-crossing to compute the similarity measure. Our results support that excursion sets are more sensitive than standard measures to elucidate the existence of {\it a priori} crisis.

Suggested Citation

  • M. Shadmangohar & S. M. S. Movahed, 2022. "Clustering of Excursion Sets in Financial Market," Papers 2207.03221, arXiv.org.
  • Handle: RePEc:arx:papers:2207.03221
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2207.03221
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    2. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    2. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    3. Tabak, Benjamin M. & Luduvice, André Victor D. & Cajueiro, Daniel O., 2011. "Modeling default probabilities: The case of Brazil," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(4), pages 513-534, October.
    4. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Collective behavior of cryptocurrency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 499-509.
    5. Gautier Marti & Frank Nielsen & Philippe Donnat & S'ebastien Andler, 2016. "On clustering financial time series: a need for distances between dependent random variables," Papers 1603.07822, arXiv.org.
    6. Lu, Shan & Zhao, Jichang & Wang, Huiwen & Ren, Ruoen, 2018. "Herding boosts too-connected-to-fail risk in stock market of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 945-964.
    7. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    8. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    9. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    10. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    11. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," Papers 1504.00590, arXiv.org.
    12. Liu, Li-Zhi & Qian, Xi-Yuan & Lu, Heng-Yao, 2010. "Cross-sample entropy of foreign exchange time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4785-4792.
    13. Jovanovic, Franck & Mantegna, Rosario N. & Schinckus, Christophe, 2019. "When financial economics influences physics: The role of Econophysics," International Review of Financial Analysis, Elsevier, vol. 65(C).
    14. Anna Denkowska & Stanis{l}aw Wanat, 2019. "A Dynamic MST- deltaCovar Model Of Systemic Risk In The European Insurance Sector," Papers 1912.05641, arXiv.org.
    15. Vilém Novák & Soheyla Mirshahi, 2021. "On the Similarity and Dependence of Time Series," Mathematics, MDPI, vol. 9(5), pages 1-14, March.
    16. Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.
    17. Xinyu Wang & Liang Zhao & Ning Zhang & Liu Feng & Haibo Lin, 2022. "Stability of China's Stock Market: Measure and Forecast by Ricci Curvature on Network," Papers 2204.06692, arXiv.org.
    18. Anna Denkowska & Stanisław Wanat, 2022. "Linkages and systemic risk in the European insurance sector. New evidence based on Minimum Spanning Trees," Risk Management, Palgrave Macmillan, vol. 24(2), pages 123-136, June.
    19. Anna Denkowska & Stanis{l}aw Wanat, 2019. "Linkages and systemic risk in the European insurance sector: Some new evidence based on dynamic spanning trees," Papers 1908.01142, arXiv.org, revised Aug 2019.
    20. Gautier Marti & Sébastien Andler & Frank Nielsen & Philippe Donnat, 2016. "Clustering Financial Time Series: How Long is Enough?," Post-Print hal-01400395, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2207.03221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.