IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2207.00949.html
   My bibliography  Save this paper

Stochastic arbitrage with market index options

Author

Listed:
  • Brendan K. Beare
  • Juwon Seo
  • Zhongxi Zheng

Abstract

Opportunities for stochastic arbitrage in an options market arise when it is possible to construct a portfolio of options which provides a positive option premium and which, when combined with a direct investment in the underlying asset, generates a payoff which stochastically dominates the payoff from the direct investment in the underlying asset. We provide linear and mixed-integer linear programs for computing the stochastic arbitrage opportunity providing the maximum option premium to an investor. We apply our programs to 18 years of data on monthly put and call options on the Standard & Poors 500 index, finding no evidence that stochastic arbitrage opportunities are systematically present. A skewed specification of the underlying market return distribution with a constant market risk premium and constant multiplicative variance risk premium is broadly consistent with the pricing of market index options at moderate strikes.

Suggested Citation

  • Brendan K. Beare & Juwon Seo & Zhongxi Zheng, 2022. "Stochastic arbitrage with market index options," Papers 2207.00949, arXiv.org, revised Jan 2025.
  • Handle: RePEc:arx:papers:2207.00949
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2207.00949
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linton, Oliver & Song, Kyungchul & Whang, Yoon-Jae, 2010. "An improved bootstrap test of stochastic dominance," Journal of Econometrics, Elsevier, vol. 154(2), pages 186-202, February.
    2. Brendan K. Beare, 2023. "Optimal measure preserving derivatives revisited," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 370-388, April.
    3. Ranadeb Chaudhuri & Mark Schroder, 2015. "Monotonicity of the Stochastic Discount Factor and Expected Option Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1462-1505.
    4. Dmitriy Muravyev & Neil D Pearson & Stijn Van Nieuwerburgh, 2020. "Options Trading Costs Are Lower than You Think," The Review of Financial Studies, Society for Financial Studies, vol. 33(11), pages 4973-5014.
    5. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    6. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    7. Dybvig, Philip H, 1988. "Distributional Analysis of Portfolio Choice," The Journal of Business, University of Chicago Press, vol. 61(3), pages 369-393, July.
    8. Peter Christoffersen & Steven Heston & Kris Jacobs, 2013. "Capturing Option Anomalies with a Variance-Dependent Pricing Kernel," The Review of Financial Studies, Society for Financial Studies, vol. 26(8), pages 1963-2006.
    9. George M. Constantinides & Michal Czerwonko & Stylianos Perrakis, 2020. "Mispriced index option portfolios," Financial Management, Financial Management Association International, vol. 49(2), pages 297-330, June.
    10. Brendan K. Beare & Lawrence D. W. Schmidt, 2016. "An Empirical Test of Pricing Kernel Monotonicity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 338-356, March.
    11. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    12. George M. Constantinides & Michal Czerwonko & Jens Carsten Jackwerth & Stylianos Perrakis, 2011. "Are Options on Index Futures Profitable for Risk‐Averse Investors? Empirical Evidence," Journal of Finance, American Finance Association, vol. 66(4), pages 1407-1437, August.
    13. repec:bla:jfinan:v:58:y:2003:i:5:p:1905-1932 is not listed on IDEAS
    14. Beare, Brendan K., 2011. "Measure preserving derivatives and the pricing kernel puzzle," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 689-697.
    15. Jackwerth, Jens Carsten, 2000. "Recovering Risk Aversion from Option Prices and Realized Returns," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 433-451.
    16. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.
    17. Russell Davidson, 2009. "Testing for Restricted Stochastic Dominance: Some Further Results," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 1(1), pages 34-59, September.
    18. Fousseni Chabi-Yo & René Garcia & Eric Renault, 2008. "State Dependence Can Explain the Risk Aversion Puzzle," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 973-1011, April.
    19. Levy, Haim, 1985. "Upper and Lower Bounds of Put and Call Option Value: Stochastic Dominance Approach," Journal of Finance, American Finance Association, vol. 40(4), pages 1197-1217, September.
    20. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle in forward looking data," Review of Derivatives Research, Springer, vol. 21(3), pages 253-276, October.
    21. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    22. Thierry Post, 2003. "Empirical Tests for Stochastic Dominance Efficiency," Journal of Finance, American Finance Association, vol. 58(5), pages 1905-1931, October.
    23. Brendan K. Beare & Asad Dossani, 2018. "Option augmented density forecasts of market returns with monotone pricing kernel," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 623-635, April.
    24. Song, Zhaogang & Xiu, Dacheng, 2016. "A tale of two option markets: Pricing kernels and volatility risk," Journal of Econometrics, Elsevier, vol. 190(1), pages 176-196.
    25. Stylianos Perrakis, 2022. "From innovation to obfuscation: continuous time finance fifty years later," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(3), pages 369-401, September.
    26. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    27. Perrakis, Stylianos & Ryan, Peter J, 1984. "Option Pricing Bounds in Discrete Time," Journal of Finance, American Finance Association, vol. 39(2), pages 519-525, June.
    28. Matthew Linn & Sophie Shive & Tyler Shumway, 2018. "Pricing Kernel Monotonicity and Conditional Information," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 493-531.
    29. Thierry Post & Iňaki Rodríguez Longarela, 2021. "Risk Arbitrage Opportunities for Stock Index Options," Operations Research, INFORMS, vol. 69(1), pages 100-113, January.
    30. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    31. Ritchken, Peter H, 1985. "On Option Pricing Bounds," Journal of Finance, American Finance Association, vol. 40(4), pages 1219-1233, September.
    32. Stylianos Perrakis, 2019. "Stochastic Dominance Option Pricing," Springer Books, Springer, number 978-3-030-11590-6, April.
    33. Timo Kuosmanen, 2004. "Efficient Diversification According to Stochastic Dominance Criteria," Management Science, INFORMS, vol. 50(10), pages 1390-1406, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brendan K. Beare, 2023. "Optimal measure preserving derivatives revisited," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 370-388, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stylianos Perrakis, 2022. "From innovation to obfuscation: continuous time finance fifty years later," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(3), pages 369-401, September.
    2. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    3. George M. Constantinides & Michal Czerwonko & Stylianos Perrakis, 2020. "Mispriced index option portfolios," Financial Management, Financial Management Association International, vol. 49(2), pages 297-330, June.
    4. Thierry Post & Iňaki Rodríguez Longarela, 2021. "Risk Arbitrage Opportunities for Stock Index Options," Operations Research, INFORMS, vol. 69(1), pages 100-113, January.
    5. Maik Dierkes & Jan Krupski & Sebastian Schroen & Philipp Sibbertsen, 2024. "Volatility-dependent probability weighting and the dynamics of the pricing kernel puzzle," Review of Derivatives Research, Springer, vol. 27(1), pages 1-35, April.
    6. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    7. Hamed Ghanbari & Michael Oancea & Stylianos Perrakis, 2021. "Shedding light on a dark matter: Jump diffusion and option‐implied investor preferences," European Financial Management, European Financial Management Association, vol. 27(2), pages 244-286, March.
    8. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle in forward looking data," Review of Derivatives Research, Springer, vol. 21(3), pages 253-276, October.
    9. Peter Reinhard Hansen & Chen Tong, 2022. "Option Pricing with Time-Varying Volatility Risk Aversion," Papers 2204.06943, arXiv.org, revised Aug 2024.
    10. Brendan K. Beare, 2023. "Optimal measure preserving derivatives revisited," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 370-388, April.
    11. Jiao, Yuhan & Liu, Qiang & Guo, Shuxin, 2021. "Pricing kernel monotonicity and term structure: Evidence from China," Journal of Banking & Finance, Elsevier, vol. 123(C).
    12. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    13. Xinyu WU & Senchun REN & Hailin ZHOU, 2017. "Empirical Pricing Kernels: Evidence from the Hong Kong Stock Market," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(4), pages 263-278.
    14. repec:hum:wpaper:sfb649dp2013-023 is not listed on IDEAS
    15. Dillschneider, Yannick & Maurer, Raimond, 2019. "Functional Ross recovery: Theoretical results and empirical tests," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    16. Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005. "Option pricing: Real and risk-neutral distributions," CoFE Discussion Papers 05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    17. Brendan K. Beare & Lawrence D. W. Schmidt, 2016. "An Empirical Test of Pricing Kernel Monotonicity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 338-356, March.
    18. Grith, Maria & Karl Härdle, Wolfgang & Krätschmer, Volker, 2013. "Reference dependent preferences and the EPK puzzle," SFB 649 Discussion Papers 2013-023, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Steven Heston & Kris Jacobs & Hyung Joo Kim, 2023. "The Pricing Kernel in Options," Finance and Economics Discussion Series 2023-053, Board of Governors of the Federal Reserve System (U.S.).
    20. Beare, Brendan K., 2011. "Measure preserving derivatives and the pricing kernel puzzle," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 689-697.
    21. Chen Tong & Peter Reinhard Hansen & Zhuo Huang, 2022. "Option pricing with state‐dependent pricing kernel," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1409-1433, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2207.00949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.