IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.01386.html
   My bibliography  Save this paper

An Intrinsic Entropy Model for Exchange-Traded Securities

Author

Listed:
  • Claudiu Vinte
  • Ion Smeureanu
  • Titus-Felix Furtuna
  • Marcel Ausloos

Abstract

This article introduces an intrinsic entropy model that can be used as an indicator to gauge investor interest in a given exchange-traded security, along with the state of the general market corroborated by individual security trade data. Although the syntagma of intrinsic entropy might sound somehow pleonastic, since entropy itself characterizes the fundamentals of a system, we would like to make a clear distinction between entropy models based on the values that a random variable may take and the model that we propose, which employs actual stock exchange trading data. The model we propose for intrinsic entropy does not include any exogenous factor that could influence the level of entropy. The intrinsic entropy signals whether the market is inclined to buy the security or rather to sell it. We further explore the usage of the intrinsic entropy model for algorithmic trading, in order to demonstrate the value of our model in assisting investors in the selection of the intraday stock portfolio, along with timely generated signals to support the buy / sell decision making process. The test results provide empirical evidence that the proposed intrinsic entropy model can be used as an indicator to evaluate the direction and intensity of intraday trading activity of an exchange-traded security. The data used for the test consisted of historical intraday transactions executed on The Bucharest Stock Exchange (BVB).

Suggested Citation

  • Claudiu Vinte & Ion Smeureanu & Titus-Felix Furtuna & Marcel Ausloos, 2022. "An Intrinsic Entropy Model for Exchange-Traded Securities," Papers 2205.01386, arXiv.org.
  • Handle: RePEc:arx:papers:2205.01386
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.01386
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maasoumi, Esfandiar & Racine, Jeff, 2002. "Entropy and predictability of stock market returns," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 291-312, March.
    2. J. Tenreiro Machado & Fernando B. Duarte & Gonçalo Monteiro Duarte, 2012. "Analysis of Stock Market Indices with Multidimensional Scaling and Wavelets," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-14, July.
    3. Anil Bera & Sung Park, 2008. "Optimal Portfolio Diversification Using the Maximum Entropy Principle," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 484-512.
    4. Roy Cerqueti & Giulia Rotundo & Marcel Ausloos, 2018. "Investigating the configurations in cross-shareholding: a joint copula-entropy approach," Papers 1807.09346, arXiv.org.
    5. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    6. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    7. Claudiu VINTE, 2009. "The Informatics of the Equity Markets - A Collaborative Approach," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 13(2), pages 76-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    2. Martin Kyere & Marcel Ausloos, 2021. "Corporate governance and firms financial performance in the United Kingdom," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1871-1885, April.
    3. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    4. Shahzad, Syed Jawad Hussain & Hernandez, Jose Areola & Hanif, Waqas & Kayani, Ghulam Mujtaba, 2018. "Intraday return inefficiency and long memory in the volatilities of forex markets and the role of trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 433-450.
    5. Stosic, Dusan & Stosic, Darko & de Mattos Neto, Paulo S.G. & Stosic, Tatijana, 2019. "Multifractal characterization of Brazilian market sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 956-964.
    6. Yonatan Berman & Yoash Shapira & Eshel Ben-Jacob, 2014. "Unraveling Hidden Order in the Dynamics of Developed and Emerging Markets," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-10, November.
    7. Busu, Cristian & Busu, Mihail, 2019. "Modeling the predictive power of the singular value decomposition-based entropy. Empirical evidence from the Dow Jones Global Titans 50 Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    8. David E. Allen & Michael McAleer & Robert Powell & Abhay K. Singh, 2013. "A Non-Parametric and Entropy Based Analysis of the Relationship between the VIX and S&P 500," JRFM, MDPI, vol. 6(1), pages 1-25, October.
    9. Aurelio F. Bariviera & Angelo Plastino & George Judge, 2018. "Spurious Seasonality Detection: A Non-Parametric Test Proposal," Econometrics, MDPI, vol. 6(1), pages 1-15, January.
    10. Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2019. "Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market," Papers 1901.04967, arXiv.org.
    11. Kristoufek, Ladislav & Vosvrda, Miloslav, 2016. "Gold, currencies and market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 27-34.
    12. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
    13. Aurelio Fernandez Bariviera & María Belén Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "The (in)visible hand in the Libor market: an information theory approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(8), pages 1-9, August.
    14. D’Amico, Guglielmo & Gismondi, Fulvio & Petroni, Filippo & Prattico, Flavio, 2019. "Stock market daily volatility and information measures of predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 22-29.
    15. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    16. Zunino, Luciano & Fernández Bariviera, Aurelio & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2012. "On the efficiency of sovereign bond markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4342-4349.
    17. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    18. Claudiu Tiberiu Albulescu & Aviral Kumar Tiwari & Phouphet Kyophilavong, 2021. "Nonlinearities and Chaos: A New Analysis of CEE Stock Markets," Mathematics, MDPI, vol. 9(7), pages 1-13, March.
    19. Alvarez-Ramirez, Jose & Rodriguez, Eduardo, 2021. "A singular value decomposition entropy approach for testing stock market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    20. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.01386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.